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Well-Posedness of an Optimal Control Problem
with a Singular Perturbation and Integral Constraints

I. M. Conte, 1. 1. Slavov

Presented by P. Kenderov

In our paper we consider the problem: to minimize a convex integral functional subject to
a quasilinear control system with a small parameter ¢>0 in a part of derivatives and additional
integral constraints. The convergence of the optimal value and optimal control when &£—0 is
investigated.

1. Introduction

Many authors have been interested in singularly perturbed optimal control
problems in the last 20 years. The main reason is that the systems containing
a small parameter in a part of derivatives (singular pertubation) are convinient
tools to describe two interconnected processes with different dynamics, i.e. one is
considerable faster than the other one. More detailed information about
applications and practical problems in which singular perturbation technique is
used one can find in surveys of P. V. Kokotovicetal [1], V.R. Saksena et
al. [2], P. V. Kokotovic [3]. As it may be seen in [1]-[3] the majority of papers
are devoted to asymptotic expansions of the optimal value, trajectory and control
with respect to the singular parameter &. Usually the minimized functional have
special form there, for example in [4] and [5] it is a quadratic one, and the controls
are unconstrained.

The continuous dependence of the optimal value, trajectory and control
when ¢ — 0 is considered in a series of papers [6]-[10]. The papers [6] and [7] deal
with singularly perturbed problems in which the system is linear, the controls are
unconstrained and the final state is fixed. In [8] the functional is in more general
form — it has a terminal term. In [9] and [10] a problem with integral functional is
studied, the system is linear again, the trajectories at the final moment and the
controls are constrained. V. Veliov [11] considers singularly perturbed
time-optimal problem with special integral constraints for a linear system.

In this paper we consi&jer a quasilinear system and in addition to the
restriction on the controls we have mixed integral constraints. The integral
constraints are usually interpreted as restrictions to quantities related to the
energy.

So, let the following problem P, for e>0 be given: to minimize
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T
(1) I(x, y, w= [f(x(2), /1), u(r), t)dt,
o
subject to
(2a) Xx=A,(x, )+ A,(x, )y+B,(x, thu, x(0)=x°,
(2b) ey=A;(x, )+ A4 (x, )y+B,(x, u, W0)=)°,
3) u(t)eV for a.e. te[0, T},
4) x(t)e H for every te[0, T],
T
) § g(x(®), o), ut), )dt=0,
o

where x(1)eW{,(0, T), W )eW{, (0, T), u(-)eLP (O, T), te[0, T] and
0<T<+oisfixed; Ve Rx, Hc R", f:R"xR™"xR*x[0, T] > R, g=(g,,---5 4,)
and g;:R"xR™x R*x[0, T] - R, i=T1, r. We denote with W{,(0, T), 1=p< ©
the Sobolev space of all absolutely continuous on [0, T] functions with values in
R" and first derivatives belonging to L™ (0, 7). L (0, T) denotes the usual
Lebesgue’s space of functions with values in R" and p-integrable norm.
Substituting e=0 in (2) and supposing that A4,(x, t) is invertible for every
xeR" and te[0, T] we find from (2) the following lower order system:

(6a) x=Aqy(x, t)+By(x, hu, x(0)=x°,
(6b) W)= —Az"(x, tNA;(x, )+ B,(x, t)u),
where Ag=A,—A, A7 ' A;, B,=B,— A, A;'B,.

For ¢=0 we consider the “reduced” problem P,: to minimize (1) subject to
all (x, y, u) that satisfy the constraints (3)«(5) and the “reduced” system (6).

We note that a similar problem (with integral constraints (5)) is considered by
L M. Conte [12] but with regular perturbation, i.e. the parameter ¢ is in the
right-hand side of system (2). ¢

The following results are obtained here:

In Section 2 a performance well-posedness is proved, i.e. the optimal value in
P, converges to this in P, when ¢ —0;

In Section 3, when system (2) is linear and constraints (3) and (4) are dropped,
L, -strong convergence of the optimal control is shown.

Now, let introduce some notations:

|| is the norm in the Euclidean space R* produced by the scalar product
<55 M- 11, — the usual norm in LY (0, T), 1<p=0; |- ||, — the supremum norm
in C [0, 5’], the space of all continuous on [0, T] functions with values in R*; the
upper index s will be dropped for simplicity when dimension is clear; an upper
;nd[t(%)x T’I]‘ means transposition; C is a general constant indepedent of ¢<0 and
€[0, T].

2. Performance well-posedness

In this section we suppose that:
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Al. V is nonempty, compact and convex, H is closed. The entries of A;(x,t)
and B(x, t) are continuous in R" x [0, T]. There exists function le L ,, (0, T) such
that for every xeR" and a.e. te[0, T]

|4, (x, Ol+143(x, OI+IB(x, ) +IBy(x, )=Ue)1+|x]),
'A((x9 t)lél(t)’ i=2’ 4;
A2. There exists a constant u>0 such that for every xeR", ye R™ and
tel0, T]
s Ag(x, Dy> < —plyl*
The reduced system (6a) has unique solution for every measurable function u(-),
u(t)eV, tel0, T].

Remark. Condition Al implies (see [13]), p. 89) the existence of solutions of
systems (2) and (6a), for every ueL (0, T).
Denote

U ={u(-) — measurable|u(t)e V for a.e. te[0, T}

and let (x, (X - ), y, (uX -)) be any solution of (2) corresponding to the control ue U.
First, we shall prove the following technical lemma:

Lemma 1. Let conditions Al and A2 be fulfilled. Then:

(i) The set {(x,(uX"), y.(uX-))|e€[0, ), ueU} is bounded in C,[0, T]
x Co[0, T] for some £>0;

(ii) Let e, —0, n — + oo and (x,, y,) be any solution of (2) with e=¢,, u=u,
and let u,—uy in L,(0, T)-weak. If (xq, yo)is the solution of reduced system (2) for
u=ug,, then x,—x, in Cy[0, T] and y,—y, in L, (0, T)-weak;

(iii) If u, »>uy in L,(0, T) then y,—y, in L,(0, T).

Proof. (i) We use some of the ideas from [14] to prove (i). Choose ¢, >0. Let
e€(0, &), ueU and (x,, y,)=(x,(u)"), y.(u)X-)). Multiplying (2a) by x,, we find

1d
2dt
and using Al we derive

[x. (O (4, (x., Ol+]|42(x,, Oy.(0]+1By(x,, ult))ix ()]

(M) 5O SCU+XOI+.@DIx,0) for ae. tel0, T}

Analoguously, multiplying (2b) by y,, we get

@ 2 SIORS —uly,OF + CA+x Oy, for ae. telo, T}
Integrating (7) and (8) in [0, t] for every te[0, T] and adding, we obtain

1 t
) 2RO + 3130 + 1 Iy, (o) ds
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SCA+ [(Ix S+ 1% () + Ix (N ye(s) +1ye(s)) ds).
o

Denote
or=(f X (O0 d9)2, w,=({ Iy, sy
o o

Then, from (9), using Cauchy—Schwarz’s inequality we have
w2 < C[(1 +v,)w,+ (1 +v,+v?)).

Taking in consideration that v,20 and w,>0 we solve this quadratic inequality
with respect to w, and derive that

0=w,SC(1+v,)+C[(1+v,)* +4(1 +v,+0?)])*/?

hence

(10) w, S C(1+v,).
Then by (9) it follows that

11 lx, (012 = C(1 +v,+ v +w,(1+1,)) SC(1 +v,+ v?).
Let M={te[0, T]|v,s1}. If te M, then from (11)
. ()2 S C2+?).
If t¢ M, then, again by (11)

Ix, (O < C(1 +v,+ 7)< C(1 +202).

So for each te[0, T]

I (OR SO+ fIx ()2 ds).
[1]

Using Gronwall’s lemma we conclude that {x,}, eé€(0, &] is bounded in C,. Then
(10) implies boundedness of {y,} in L,.
Now, let ¢=0. Multiplying (2b) with y, we get
11y @ S UeX1 + [xo (A Iyo (),

i(.: e. yz €L . So we find that {(x,(u)X"), y.(uX*)) € € [0, & ], ue U} is bounded in
0o :

Then, from Al it follows
T T
f X, @02 dt=C [ (1 + |y, (u))*)dt=C,
o o
i.e. for every ueU, e€(0, &), t,, t,€[0, T)

(12) ee(u)y) — x, (u)ez)l = | Il X (uXt)dt| S C(It, —t, |)'2.

2



216 1. M. Conte, L. L. Slavov

So, as it is proved in [15], there exist constants £>0, g,>0 and ¢>0 such that
t—s
1Y, 9lSasexp(—o—),
for every ue U, 0<e=% and 0<s<t<T. Here Y,(t, s) is the fundamental matrix

solution of ey=A,(x,(uXt), )y, normalized at t=s.
From this estimation and Al, we find

. 1 _
1. XIS C1 + exp(—0 =) bk, Kl ds)

<Cl+ éexp(—at—:—s)|§=o)§(3

for every ue U, £€(0, &. So (i) is proved.

(i) We shall prove that if (x,, y,) is a solution of (2) for e=¢,, u=u,,
n=1,2,... and u, - u, weakly in L,, ¢, — 0 then {(x,, y,)} has a’ condensation
point (%, y) in Cyx(L,-weak) and X, — X, &,y,—0 in L,-weak for suitably
chosen subsequences. Here and further, when it is necessary, we use the same
indices for the subsequences to avoid complicated notations.

Since, by (i), {(%X,, ¥,)} is bounded inle, then for some subsequences X, — £

and y, — y L,-weakly. Take %(t)=x°+ jé(s) ds. Then from the boundedness of

{x,} in C, and (12) we find passing to tohc subsequences that x, - X in C, ana
x=¢. Since {¢,p,} is bounded in L, (follows from Al and (i)), {¢,y,} has
a condensation point p in L,-weak. Then

n.(t)= j;s,,)",,(s)ds - ip(s)ds, te[0, T)], n—> +oco0.
Furthermore, by Al and (i), for every te[0, T]

OIS { e, 3N d5 S C (1 +1x, 1+ 11, dsS C.
Then, by the Lebesgue dominated convergence theorem

Eln,(t)l dt —» ilép(s)dsldt, n— + oo.

On the other hand, using (i)

T T
fIn@de=e, ([ ly.(Idt+T|y°) =0, n— +oo.
o ]

Hence ¢,y, converges L>-weakly to 0 as n— + co.
Consequently we get

(13) y,—y weakly in L,, ¢,y,—0 weakly in L,,
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%, —= X weakly in L,, x,» % in Cy, n— + 0.

Let A be arbitrarily chosen measurable subset of [0, T]. Tending with
n— +0o0 in

[ Xa(0)dt= [ (A, (x, (1), D+ A,(x,(8), ya()+By(x,(1), Du,()de,
A A
Jenya()dt= [(A3(x,(1), )+ A4(x,(0), OYa(t)+ By (x,(2), Bu,(t)dt
A A 2
and using (13) and arbitrariness of A, we find that (X, y) is a solution of (6) for
u=u,. Then, by the uniqueness of solution of (6), (ii) is proved.
(iii) Denote AA;(t)=A;(x,(z), t)—A;(xo(t), 1), i=3, 4, AB,(t)=B,(x,(t), t)

—B,(xo(t), t) and Au,(t)=u,(t)—uq(2).
From A2 and (13) we obtain

T
L lya®—yol*de
0
S — [ Ya®) = yo (1), Ag(x, (1), XY,(0)—yo(2))>dt
0

D= volD), —ul0)+ AA5(0)+ A, (o

+AB, (Jug () + B, (x,(t), t)Au,())dt

O ey

T
= ~%e,.(|y.(t)|2'—ly°lz)— § a0 300 dt

+ }- Ya) = yo(®), AA;(1)+AAL(t)yo(2)
0
+AB, (0)uy (1) + By (x,(8), )Au,(1)> dt

1 T N
S 5elV° P+ [ o), ea(®)> dt+Clya—yol,
0

x max (|AA4;(0)|+|AA4,(O+IAB, (0] + llu, —uo |l 2)
0sStsT
whence
Iya—¥oll =0 for n— +co.
The lemma is provedm
Assume in addition that:

A3. For every sufficiently small ¢>0 there exist ue U and solution (x,(u)-),
y.(u)X-)) of (2) that satisfy constraints (4) and (5);
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Ad. Functions f and g are continuous in (x, , u)eR”"'”‘_ for a.e. te[0, T},
measurable in t [0, T for every (x, y, u)ye R"*™** and convex in (y, u)e R™** for
every xeR", te[0, T). There exists me L (0, T) such that

f(x, y, u, )=m(t) and g(x, y, u, )Zm(t)
for every (x, y, uy)e R**™** and a.e. te[0, T)

T
From A4 it follows (see [16]) that the functionals (x, y, u) = [ f(x, y, u, t)dt
o

T
and (x, y, u)— [g;(x, y, u, t)de, i=1,r are Ls.c. (lower semicontinuous) in

0
C, x (L , -weak) x (L , -weak). Moreover from A3 we find that the sets of functions
(x, y,u) satisfying (2)-5) (respectively (3)6) for £¢=0) are nonempty and by
Lemma 1 (i) they are compact in C, x (L ,-weak) x (L , -weak) for £20. Hence,
each problem P,, e=0 has a solution.
Let I,=1I(%,, 9,, 4,) be the optimal value in P,, ¢Z0. The main result in the
section is formuiated in the corollary to the following:

Theorem 1. Let conditions A1-A4 be satisfied. Then
I, < liminfT,.
e—+0

Proof. Let ¢, - 0, n - + c0. According to condition A3 there exist controls
u,eU,n=1, 2... such that (x, (4,X"), Ve, @, X)) satisfy with u, constraints (4) and
(5). Then, by Al, it follows that there exists control u,€ U such that passing to
subsequences, 4, — u, weakly in L,. By Lemma 1(ii) we get that 2., = Xo in C
and §, —y, weakly in L, when n— + oo, where (x,, yo) is the solution of the
reduced system (6) for u=u,. Besides, by the closedness of H, x,(t)e H for every

T
te[0, T). Since maps (x, y, w)— [g;(x, y, u, t)de, i=T,r are Ls.c. in
o

C, x (L ,-weak) x (L ,-weak) this means that (x,, y,, 4,) is an admissible point
in P,.
Now, using that I is lLs.c., we get
I(fo, .90’ ao)él(xo, yO’ “o)§ llm‘nfl(le’ 9‘»’ a‘u).
n— +o

It is obvious that we shall have performance well-posedress if in addition to
A1-A4 the following is fulfilled:

(14) . limsupI,<1,.

A necessary and sufficient condition for (14) is:
(*) For any 6> 0 there exists £, > 0 such that for every 0 <& <g, there is a control
u, admissible in P, with
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I(X,, Yes ua)§f0+69

where (x,, y,) is the solution of (2) with u,.
Really, if (*) is fulfilled then from

izél(xv yv uz)§i0+5

and arbitrariness of >0 we get (14). In the opposite, since I, <+ o then for
every 6>0 there is £,>0 such that for every 0<e<g,

I.<f+6<+oo.
So, we can find (x,, y,, 4,) admissible in P,, 0<e<g, for which
[.<Ix,, y., u,)<I,+6
hence
I(x,, y,, u,)ST,+26.

Now, using Theorem1 and (*), we give sufficient conditions for
well-posedness in P,.

Corollary. Let A1-A4 and at least one of the following conditions be satisfied:

(i) Let P%, =0 be the following problem — minimize (1) subject to (3), }6) and
(15) x(t)e]H|[, for tel0, T},

T
(16) | g(x@), n2), u(e), )dt= —a,
0

where |H[,={xeH|x+aB<H} and .B is the closed unit ball in R* (P° coincides
with the reduced problem P,). Then P* is performance well-posed, i. e. if I* is the
optimal value in P* then "I , when a—0. Function g is locally Lipschitzian in
(x ,y) uniformly in ueV, i. e. for every bounded X cR", YCR™ there exists
reL,(0, T) such that for every x,€X, y;eY, j=1, 2, ueV and tel0, T]

g (xy5 Y15 4, )—gi(xz, Y2, 4, OISHENIXy—X5]+|y; —y,)), i=T,7;
(i) System(2) is linear with respect to x, y and u (see (21) in Section3) and

g, ) is convex for t€ (0, T). There exist a constant p>0 and a control i ()e U
such that if (%, y) is the corresponding solution of the reduced system (see 23)) then

T
[ g:(x(0), w0, a@), nde<—B, i=1,r
0
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and x(t) eint H, te[0, T]. Function g is locally Lipschitzian in (x, y) uniformly in
ueV.
Then lim I,=1,.

e—0
Proof. It is sufficient to prove only (*).
(i) Let 6>0. Choose a> 0 such that for the solution of P* (x§, y§, u,) one has

(17) I3, y5, u,)<Io+6.

Let (xZ,)) be a solution of (2) for u=u,. From Lemma 1 we find &, >0 such that
for every O<e<eg,, i=1,r1

T
{ g9:(x2 (), (), u,@), )de

=

© ey

l9: (@), ¥2(1), u, (1), )—gi(x56 (1), Y6 (®), u,(2), 1)) dt

T
+ [ 9:(x3 (1), ¥5 (), u (0), )dt=C( le:—-x“éllc-i-ll)’:-—%llz)—aé—;-
(4]

Moreover, by (15) and Lemma 1 (iii) it follows for some €,>0 that x;(t) e H for
O<e<e,, tel0, T], ie. (xZ, yi, u,) is admissible in P,, 0 <e<min (g,, &,). On the
other hand, Lemma 1 (i), (iii) and Lebesgue’s theorem give

(18) ' I(xz, Y, ug) = I(x5, Yo, u,), €—>0.
Then by (17) and (18) there exists ¢,>0 such that for 0<e<g,
I(X:, Y:, ua)_s_io+6$

so (*) and therefore the corollary are proved in this case.
(ii) Define u,=(1—a)ly+ai=0,+a(ii—14,) for every O<a<l. By the
linearity of (2), convexity of g and H it follows for every O0<a<1 that

xp(t)eintH for tel0, T,

T T
(19) gg;(X%(t), Yo (1), u,(t))de é(l—a)gfh(fo(t), 90(®), 2o(1))de

+a }gi(f(t)’ ), u(t)dt< —ap, '=17
V]

Besides, u, — #, when a — 0. Then using standard arguments (Gronwall’s lemma),
we get

IXo—%ollc =0, 1¥6—9oll2 >0 as «a—0.
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Hence for every >0 there exists ay,>0 such that if 0<a<a, then
(x5, y3, u)<T,+d.

On the other hand, arguing like in the case (i) and using (19) we find that (xZ, )7,
u,) is admissible in P, for ¢>0 sufficiently small and

I(x3, y2, u) = I10xG, Y5, u,), 0.
Combining this with the above unequality, we get (*) and so the proof is finished m
3. L,-convergence of the optimal control
In this section we consider the problems P,, é=0 when system (2) is linear

and constraints (3) and (4) (on the controls and “slow” variables) are dropped.
Namely, let the following problem P, be considered for £>0:

T
(20) I(x. v. w)= [f(x(t), t), u(t), t)dt— inf,
V] u

@1 %= A, (O + A,y + By (O, X(O)=x°,
£9=A3(Ox + A4y + B, (s, H0)=)°

T
(22) [ 9(x(®), 1), u(®), dt=0,
. o

where x(-)e W, (0, T), (-)e W, (0, T), u(-)e LY (0, T) and f, g act in the same
spaces like in Section 1.
For ¢=0 we minimize (20) subject to the reduced system

(23a) %= Aqy(t)x+ By(t)u, x(0)=x°,
(23b) W)= — A3 ' (EXA;5(t)x + By (1)),
Ag=A,—A,A;' Ay, By=B,— A, A;'B,

and (22).

Suppose that:

Bl1. The entries of 4, and B; are continuous on [0, T'] and all eigenvalues of
the matrix A, (t) have negative real parts for te[0, T];

B2. Functions f and g are twice continuously differentiable with respect to
their arguments, f(-, t) and g(-, t) are convex. Moreover, there exists a constant
2

0
x>0 such that {z, Wf(x, y, u, )z)2x|z|? for all x, y, z, u and t. Functions
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of of og ag
ox’ ay dx and 5
a bounded set and te[0, T];

B3. There exist a constant >0 and a function @€ L (0, T) such that if (x, y)

is the solution of (23) for u=u then

are Lipschitzian in y and u uniformly in x belonging to

T
[ 9:(X(0), ¥), a(e), dt< —B, i=T, 7
o
Introduce Lagrange function for P,, ¢>0 in the following way:

T
L,(x y, 4, Pes G A)=I(x, y, W)+ [<p.(1), X—A,()x—A;(t)y—B,(t)u)dt
0 .

T T
+ I <a,(t), ey—A3(t)x— A ()y— B, (0)u) dt+<4,, f g(x, y, u, )de>

where p,e LY (0, T), 4, LY (0, T), 4,eR’, (4,),=0, i=1,r.
Then (see [17], p. 82) for every €>0 ‘there exist a unique solution (%,, 9,, 4,) of

P, and Lagrange multiplyiers p,, q, and 4, such that
4 L=IR, 9., 8)=min{L,(x, y, 4, P.s Q> 4)|x(0)=x°,
,V(O):yo, xews..)l(or T), yew(l”.')l (09 T), ue Lg)(os T)},

T
25 o> [9(2,0), 9.2), 8,(), dt>=0.
o
Moreover, (£,, 9., 4,) satisfies the optimality conditions:
T
26) o Brp.~BIa+ 2=,
i)
(27) 13,=—A P.— AB q.+5£+ a v .(T) 0

f g
eg,= — A% — AT +_é+_a;_ T)=0.
e 2P, 449, ay ay (1] Qc(

We introduce Lagrange function for P, analogously. Then the optimal
solution (%4, 9o, 8,) fulfills:

) ogT
(28) ‘% —BTpo—Bl g0+ ou ——40=0,
of ogT
(29) ﬁo—‘Al Po— Ag‘h“'%"'%‘-os Po(T)=0,

i)
0=—ATpo—Aigo+ ay + W‘-o
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Before the main result in the section we start with an auxiliary lemma.

Lemma 2. Let (X,, y,) be the solution of (21) for u=iu. Then there exists
a constant £€>0 such that for every 0<es<é&

’ 1%, — 2,1l + 17— Pl S C lla—2a, |l ,.

Proof. Let Y,(t, s) be the fundamental matrix solution of &y=A,(t)y,
principal in t=s. It is well known (see [18]) that condition B1 implies existence of
constants £>0, 6,>0 and ¢>0 such that

(30) I%,(t, ) Soexp(—o-—),

for every 0<e<é and 0<s=<t=<T.

This estimation has been already mentioned in Section 2, but for the more
general quasilinear system (2).

Denote Ax,=x,—%,, Ay,=y,—$,, Au,=iu—1a,. Then

Ax,(0)= [ A,(9Ax () ds+ [ Ay ()Ay,()ds+ iB,(s)Au.(s) ds,
0o 0

l t
31) Ay, ()= ;j Y,(t, sNA3(s)Ax[s)+ B,(s)Au,(s))ds
o
and putting (31) in the first equality, we find
t l t s
Ax, ()= [ A;(Ax(s)ds+ _{ [ A;()Y,(s, ™HA;(7)AX,(7)
[} oo
t :
+ B,(1)Au,(t)) drds+ | B,(s)Au,(s)ds.
0
From here using (30) and changing the order of integration, we get

|Ax ()| = C[[|Ax(s)|ds + { |Au,(s)| ds
o

-+

™ | -

5) (F142 N exp(—o %) dsK1A%,(0) + Au ) de]

=C( ;‘, |Ax,(s) ds + ,g |Au,(s)| ds).

Whence, applying Gronwall’s lemma, we derive
‘ (32) lAx, . =C ||Au, ||, .
It is a standard result that if pe L{Y(0, T), geL%’(0, T) and

rt)= :( pt—1)q(r)dr
0
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then

(33) Irl2=lply gl
Applying this to (31) and using (30) and (32), we find

1t . =T
185, 1, SC I fexp(=0—")del, (1A%, I+ 184, 1,)S C 1 Au, .
)

With the above inequality and (32) we complete the proofs
Theorem 2. If conditions B1-B3 are fulfilled then
4, —a,|l , >0 when ¢ —0.

Proof. Using B1, estimation (30) and. the essential boundedness of # we
derive

(34a) IEOISCA + [I%6ds+ [I7,6)]ds),
[1] 1]

(34b) OIS C(1+ fexp(—o ") 5.6)1ds)
(]

From here, arguing like in the previous proof, i.e. putting (34b) in (34a), changing
the order of integration and so on, we find that ||x,[.+ |y, l.=C, O<e<&é
Consequently
(35) sup I(%,, 3, #)<+oo.
s 0<e<z )
In [19], p.62 it is proved that condition Bl implies a result similiar to
Lemmal for system (21), in particular we have .

Ix,—xl.+Iy.,—yll, -0 when &—0.

Then from the convexity of g(-, -, #, t), condition B2 and the boundedness of
%, ll.+ |7, ll., we obtain for sufficiently small ¢>0 that

T
£ l9:(%,®), 7.(0), (), )—g,(X(®), H2), ut), t)]dt

%,

= <ax

© ey Ny

T a'
%o Jeo @)y E—E>de+ | <‘a%(f.. Foo @y F,—Fydt
. o
SCUE-F 415, -51)s 5, i=T7.

Whence, using condition B3

(36) }gi(f,(t), F.(0), (o), :)dzg_lz’., i=TF,
o &
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i.e. (X,, y,, @) is admissible in P, for all sufficiently small e>0. On the other hand,
convexity of ] and Lemma2 give

R
I(in )—’v ﬁ)_né I(a_ fp j’-v ﬁ), i¢—£¢>dt
0 X

T T
67N +/ <§1<f., S @, 59 dt+ (<L (s, 5., @, 5-0,>de
o 0y o Ou

SC(Ix%,— %, llc+ 17— Pl 2 + T —14, 1l )
sCla—a,l,.
By condition B2 it follows that f(x, y, u, ) is strongly convex with respect to

u, which means that there exists a constant 6> 0 such that for every 20, t€[0,
T] and every x, y, u,, u, from corresponding spaces:

f(xs Yy, au, +(l—a)“2’ t)éaf(x’ Yy, Uy, t)+(l—a)f(xs Yy, U3, t)-a(l—a)olu1—u2|2'
Then (see [19], p.11)
0 “ﬁ_az "% él(iv j’.cs ﬁ)-—t.

which together with (37) yeilds that |d—4, ||, is bounded, hence, from Lemma 2,
4, 1l,, %, |l. and |9, ||, are also bounded. From the convolution unequality (33)
with arguments like tfusc in the beginning of the proof we find that |9, ||, is
bounded for 0 <e<&. Moreover, from

L2Ix,, j., @)
it follows that .
sup I,<+o0.

! 0<e<T
By (35) and (36) and the inequality
LsL.G. Jo @ Por Qs )
we get
w0 <I~I&, 5., DS -5 = @)z
i=1

so that (since (4,),20, i=1,7)

(38) 4 1=C.
Now, consider system (27). We know that

T
P.(t)= [(AT(5)P.(5) + AT (s)a.(s)— %(&(S), 9:(s), 8,(s)

. |
—%%(2,@), 9(s), 8.(NA)ds,



226 1. M. Conte, I L Slavov

17 ¢ . of
9.0)=_[ Y (s, NAZ(G)P.s)— 5(2.(8). 9:(s), 8.(5)

agT ’
- —a;(ﬁ.(S), 9.(s), 4,(s))4,)ds.
Then, using (30), (38), the boundedness of ||%, ||, 9. ll., 4, ||, and condition B2,
arguing like in (34) we find
sup (llp.ll.+llg.ll.) < + 0.

0<e<e

Fix 6>0. Choose y; — continuously differentiable on [0, T], such that
y5(0)=y° and ||y;— 9, ll, <. Then from (24) and B2 it follows

f,gL,(fo, yas ao: pv qv Az)

T
=I(20: Yss ﬂo)+ {(pv fo—Al £0_A2y6_8100>dt
T T
(39) + I(‘In 3)"5—‘4320“'44}’6_32ﬂo>dt+<1¢s Ig(fo: Vs> g, t)dt)

) 0

. T T
<I(Ro, ys> o)+ [ <Py As(Po—ys)> dt+ I(‘I.s Ay(Po—ys)> dt

0 0

T
+3§ {q,, Y5> dt+Cllys— 9o ll2-
)

From the convexity of g and (25) (when ¢=0) we get

T T g7
40) {4o, ‘_‘;g(f,, Des B, D)dE> 2 g(a(’zo’ 90> fo)Ao, R,—Ro)> dt

T ogT T agT
+ j<—6—(2°’ 90> 80)Ao, 9.— o> dt+ I<—a“(£o» 90> fo)Ao, 0, — 1> dt.
0 y o u

Denote by (%,, 7,) the solution of (21) corresponding to ad, +(1 —a)d,, where =0
is an a‘irbi}rary real number. Then, from the strong convexity of f with respect to
u we derive

I(i‘, iz’ aﬂ,+(l-—a)ﬂo)§a1(£,, .9!’ az)+(l—a)1(£09 90’ ao)
—a(l—a)f [|8,— 1, |13.
On the other hand, condition B2 gives

T g
; ;[<5£(>eo, 9or o), 2,— 20

(1]
b d
+<Z %0, 90 1), 9=90>+< L (R0, Por o), B,—180> |d
dy ou

<IX,, J,, afd,+(1—a)dy)—1(Ry, 9o, o)
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Combining the above two inequalities and tending a — 0, we get
I(xv .9.9 a) ZI(xo’ pOS ao)

0,
J[ T %01 90r ) £,~2>+< f(xo, 90r o), Du90>

+< f(fo’ P05 o) ﬂl—ﬂo)]dt+0||0‘—ﬂol|§.

By this inequality, (40) and the optimality conditions (25)29) we derive

T
icgtn"' I(pO) §3—Al fc-Azyz_Bn ac>dt
[}
T . T
+ I(qm 8.;’:_A3£3_A4yz—32a¢>dt+<lo’ Ig(,f‘, 9:: av t)dt>
(1] o

T T
21(%y, 9o ao)+0ua.—a.,||§+e5<qo, y.>dt+ f<po, X, —Xo)dt
f

T
I[ (xo’ 90> 80)— AT po—A3 g0, X, — £0)+(

° "'A4¢10s 9e—20>

f T agT
(£0s _po, ao) Bl Po— BZ q09 az—ao>]dt+ j <—(£09 -vO’ ao))-o’ £¢_£0>

(xm 90> Glo)— Agpo

+<{3,
T
£< (£09 905 Go)hos 990>+ f( (fo, 905 Bo)Ao, 8, ﬂo)]d‘
=I(£09 909 ao)+olla¢—a0"2+££<q03 ).’c)dt

+I(<p0’ .3 xo>+<p0a f £o>)dt

and after an integratlon by parts we find

T
L21(%y, o ao)+0||a.“ao||§+8I<Qm Ve dt.
0

This, with (39), yields

T
0118, — 18,113 < II(Ro, ys 0)— IR0, Po» Bo)l+€[({q, Y35
o
41)
+<q0, ¥))At| +(C+lIp.ll2+ llg.II2) 90— sl

Now, let g; be a continuously differentiable on [0, T'] function such that
45(0)=0 and |ig;—q,ll,<d. Since IIG}'. I is bounded then
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T T
6{(40, Vo> dt=11g5—4o 2 lle g, |l +e(<as(T), y°>— g(q}, 9.>d1)

= 0(3) +&C(3).

Here and below C(5) and 0(5) are known functions of 4 such that sup C(d) < + oo
and 0(6) -~ 0 when 6 — 0. Bl the above inequality and (41) we Egt

0 1|8, — 18, 13 < 0(8) +£C(9).

Since & can be arbitrarily small the proof is completeds
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