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Introduction

1. The purpose of the article is to find the orders of the Bernstein diameters
by(W%, L,) for the classes of periodic functions of several variables W2 with
bounded mixed derivative in the space [q under condition 1<p, g<oo and

high-order smoothness «. The orders by(H%, L,) for the classes of periodic
functions of several variables A%, which are defined in L, by bounded mixed
difference, will be calculated under conditions 1<g<p<oo, 1<p, ¢<2 and
high-order smoothness a.

By using the Nikol’skii duality theorem the calculation of the Bernstein
diameters can be reduced to the calculation of the Kolmogorov diameters for the
conjugate classes in the conjugate metric (see further in the text). Therefore in
a number of special cases of the Kolmogorov diameters well-known methods of
research are used and developed. For the classes of periodic functions of one
variable the Bernstein diameters by(W2, L,) for g<p were calculated by
V.E. Maiorov and respective results were presented at Tikhomirov’s seminar in
the Moscow University. In this paper there are used some ideas suggested by
V.E.Maiorov for the one-dimensional case, i.e. the reducing to the
Bernstein-Nikol’skii quantity h,, discretization etc. Here the difficulties arising in
the generalization to the several variables functions will be overcome. In some
cases easier proofs are presented.

As known to the author, I. Czarkov found the orders by(W$, L), p<g, for
the classes of periodic functions of one variable. Moreover, in special cases he
found the precise values of the diameters. -

The main results of the paper were announced at the 11th School-Seminaire
on Theory of Operators in Functional Spaces, Tchelyabinsk, 1986 (see
Proceedings of the Seminaire [1]), at the International Conference of Constructive
Theory of Functions’87 in Varna, Bulgaria, 1987 [2].

_ The author expresses his sincere gratitude to professor V. M. Tikhomirov for
his permanent interest to this work.

2. In the paper we shall use the notations from [2]. For sets A, B from a space
X the embedding 4 = = B means the existence of a constant C>0 such as that
A < CB. Then the equivalent norm (see [3])
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()l gz B sup 2* 2 [16,x(-)l,

and the Littlewood-Paley theorem (see [4], §15) yield
©0.1) I-laz < lI-llws, W5 A
3. Let W be a central-symmetric set in linear normed space X with a unit
ball B. The Bernstein diameter is called the quantity
by(W, X)=sup {e|eBn Lyc W},
e, "N

here Ly is any N-dimensional subspace in the space X. The Bernstein diameters
were introduced by V. M. Tikhomirov [5]. The Kolmogorov diameters

dy(W, X)=infsup inf x—ylx

Ly xe Wye Ly
and the Gel'fand diameters
d¥(W, X)= inf inf{e| Wn L _y < ¢B}

L—N e

(L _y is a subspace of a codimension N in the space X) are closely connected (as
will be shown further) with the Bernstein diameters.

The quantity dy appeared for the first time in Kolmogorov’s paper [6]. The

Gel’'fand diameter was introduced by V. M. Tikhomirov [7]. In his monograph

[5] V. M. Tikhomirov also considered the quantities

d-N(W, X)= inf sup inf "x—y"x,
L_yxeWyelL_y
d MW, X)=infinf{¢| Wn Ly < eB}.
Ly ¢
There is the following duality relationship between the Kolmogorov and the
Gel'fand diameters. Let X, Y be Banach spaces with the unit balls B,, B,. The
space Y is topologicaly embedded in X. The spaces X*, Y* are spaces conjugate
to X, Y respectively, with the unit balls B, B9, (B° is the polar of a set B). Then
(see [5], §2.6)
©0.2) dN(BZ9 X)=d"(B(l)’ Y*), d—N(BZ9 X)=d_N(B?’ Y®).
S. V. Pukhov [8] noted, that if X is n-dimensional space, then
0.3) dy(W, X)=1/b,_n(W°, X*),

where W° is the polar of a set W. V. E. Maiorov reduced the problem of finding
the Bernstein diameters to the problem of finding the following quantity called the
Bernstein-Nikol’skii quantity (see [9])

hy(W5, Lg)=inf sup [[x@(-)ll,/ 1%(-)llgs

Ly xe Ly

then
by(W3, L)=1/hy(Ws, L,).

The last equality follows directly from the definitions of hy and b,. Straight from
these definitions we also obtain
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0.4) hy(We, L )=d NBL,, W3).
By the duality relation (0.2) we obtain the following assertion
e 1 1 1 1
by(W3, L)=1/d_y(W;*, Lo), —+ 5=1, 2+ 5=1

Thus, the calculation of the Bernstein diameters is reduced to the calculation of
the Kolmogorov diameters.
Directly from the definitions of d~" and by follows that

d_N(Bz’ X1)= l/bn(Bx’ Xz)-

(I:)rg)m the duality relation (0.2) we get the generalization of the Pukhov’s formula

(0.5) by(B,, X,)=1/d"NB,, X,)=1/d_y(B}, X}%).

4. The calculation of the order of the diameters for the classes of periodic
functions of several variables was made for the first time by K. I. Babenk o [10],
in which dy(W$, L,) (« an integral vector) was found. The order of dy(W35, L))
(1<p=g< o0, « an integral vector) for W¢ and the classes of the functions defined
by hypoelliptical operators was found by B. S. Mityagin [11]. The
approximation of the classes )2 @ was performed by Fourier operator with
harmonics from the extended “hyperbolic cross”, which for the first time was
considered by S. A. Telyakovskif [12] and used by Ya. S. Bugrov [13] for the
approximation H § in I ,. The order of the approximation for the classes W§ and
A< in the metric of the space L ,, 1 <p <0, was defined by N. S. NikoI'skaya
[14], [3]. As in our case 1 <p, g< oo therefore the papers in which p, g=1, co are
not mentioned, because estimation methods used in them differ from those in the
present paper.

The order of dy(W3, L,) for 1<p=g<o (p, g€ R", a any vector) and for
2<g<p< oo was found in the author’s papers [15], [16]. The order of dy(W3, L,)
for 1 <p<gq<oo was found by V. N. Temlyakov [17]-{20] and for g<p by the
author [21]-{22]. The order of dy(A3%, L,) for the classes H was calculated by
V. N. Temlyakov for g=2, p<q [17]{20], and by the author for <2, p=2
[21]-[22] and for p<g=<2, and the results were announced in [2] and proved in
[23]. The result in the case 2 < q<p was published by Din’Zunq [24], but in this
case it could be easily deduced from Temlyakov’s paper [17].

The order of dy (I; « L o) is unknown for g <p <2. First we find the Bernstein
diameters of finite and infinite-dimensional sets, then apply the obtained results
for finding the Bernstein diameters of functional classes.

§1. Preliminary information and auxiliary results
Lemma 1 [2]. Let S N", x(-)= X 6,x(*), aeR", 1<p<oo.

seS ;

Then
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11 1 11 1
(1.1) |S|Z7P( = ||2""’6,x||;)"« ||x")||,<<|SI(7'F’( z ||2(""6,x|[5)".

se S seS
Lemma 2 ([4], §15). Let 1<p, g<oo, a€R". Then
1 1
(1.2) ‘ XD S IxEHF7D+)]),.
Lemma 3 [26], [26]. Let 2<p=<q=o0, B=(1/p—1/q)/(1—2/q). Then
(1.3) dy(Br, I7)X min {1, m*?aN~—#},

Theorem 1.1. The isomorphism between the space of trigonometric polyno-
mials x(t) of the form x(t)= % x,e®" and the space R** ", seN", is set by the

keOg
transformation of the function x(-) into the vector x={x,()}eR*""”,
x"(t)= z xke‘a'.)’ m=(il""’ il)ERn, ‘tj=(1t22_"ljl,._,, ﬂzz—"ju)9
:i;nk,-upm,
I=1,..,m

ji=1,..., 2471 i=1,..., n, and the following relation holds

(s, 1)
Ix( g, R 2777 lixlly g,

This theorem on the equivalence of a norm of a trigonometric polynomial to
its lattice norm is a generalization of the corresponding theorem of Marcinkiewics
and A. Zygmund (see [27], pp. 28, 34) for a one-dimensional case.

Lemma 4. Let o, feR", a>0, y,=8;/o, i=1,..., 0, )= ... =N+1>N+2
=... ZV5 71>0. Then

(14) T 26A i,

(s, A)=m

Lemma 5. Let o, peR", a, >0, y,=B;/a;, i=1,..., n, y3=... =Y+
<V+25 ... SV Then

(1.5) T 27 2™

(s,a)>m

Lemmas 4 and 5 can be proved using simple mathematics (for example, see [28]).
Lemma 6. Let x(1)= X 6,x(-), 1<g<o0, g,=min {q, 2}, q,=max {q, 2}.
Then seN
1 1
(1.6) (Z16,xN132)9, < za,x.u,,«(z 6,x(131)9, -

The proof of Lemma 6 is easily deduced from the Littlewood-Paley theorem,
Lemmal and the Triangle Inequality for a norm.
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Let r=(ry,..., 7,,...) be an ordered vector. Denote by B,(r) the
infinite-dimensional parallelipiped B, (r)={x=(xy,..., X,,...)||1X|=r,VkeN}.

Theorem 1.2. The quantity by(B,(r), I,) is finite if and only if rel,; and if
rel,, then

1
by(B,(r), I,)= min ( Z rZ/(N—m))2.
0Sm<N k>m
Proof. Let Lycl, be an arbitrary subspace of dimension N,
Ly=lin{f,,....fx}; and let fi=(fir,---sfin>---» I=1,...,N, be an orthonormal
system of vectors. By definition of the Bernstein diameter we have

b=by(B,(r), ,)=sup{eleB,NnLyc< B, (1)}

e, Ly

N N
=sup{e| T A4fjeB,(NVA | Z A,f,ll,2
=1

e, Ly =1

N N
=( = A2)v2 def |y <e}=sup {e|| T Aful=ry, keN,
1= =

1 e Ly =1

V|A<Z¢e}
N
Using the Cauchy-Bunyakovskii inequality, we get | £ 4,fu|<I|Ala,, where
=1

N N
a, 9¢f ( £ £2)Y2 (note that 0<a,<1). Then | £ A fu|<r,V|i=<e if and only if
=1 =1
e<r,/a, (a, # 0). Thus b= sup infr,/a,. And for any vector ae A def (g=(a,,...,
Ly keN

a,,..)|0<a, <1V keN, X a?=N} there exists the orthonormal system of
k=1

N
vectors f;=(fi1,--+fm--)» I=1,..., N, such that a,=( T fA)'3 k=1, 2,... (the

=1
construction of these systems is described, for example, in [29]; in the
infinite-dimensional case the construction can be done in the same way).
Consequently b= sup b(a), where b(a)= infr, /a,.

ac A keN

a0 n
If r¢l,, i.e. £ rf=oo, then there exists noeN such that X r2 = Nr? when
k=1 k=1

n=n,. Put a2=Nr2/ Z r? for k=1,..., n (n>n,); a,=0, k>n. Then a=a(n)e 4
i=1

and b*a(n))= X r/N — oo if n— oo.

i=1

ao
Let rel,, i.e. T rZ<oo. We shall prove that if a vector aeA satisfies

k=1 . .
r;/a,> b(a) for some i€ N and a;< 1, then there exists a vector a’ € A which satisfies
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a’)> b(a). Denote by K the index set of k for which r, /a, <r,/a,. Put a;>=a} +e¢,
a2=at—rie/ T r} when keK; ay=a, when k # i, k¢ K, where ¢>0 will be
je K

a0
found later. Then I a;>=N. Let take ¢é<min{l—a?, af T ri/r?}. Hence
k=1 ke K
a2z, a>=at-rie/ T rizat—riat /rt=ri(a}/rE—a} /r})>0 when keK, i.e.
je K

adeA and
bX(a')2inf {r} /a;*=r} /(a} +e); i [a>=ri (ai—rie/
T r})=1/(ai/ri—¢/ E r})21/(1/b*(a)—¢/ T r}),
je K je K je kK
ke K}>b*(a)
for ¢>0 small enough. Thus, the maximal value of b(a) can be achieved only if

a,=1 when r;/a,> b(a). These a; may be only of finite number me {0, 1,..., N—1}. *
Let

r‘n+l
1.7) T 2,2 ... zr, > m =...=ba)= sup {r,"“ , r‘_”,...}.

Since r is an ordered vector, we can rewrite (1.7) in the form

rlg coe gr_>r,,,+1/a,.+1= ces -_—b(a)gr,..q,‘.

Therefore a,=1, k<m; a,=r,/b(a), k>m. Since N= X af =m+ I ri/b%(a),
k=1 k=m+1
then b* (@)= X r /(N —m), where the quantity b, =b(a) depends only+on m. The
k>m
conditions r,,>b, >r,+; can be rewritten as follows:

r.>b,&>ri> I r/N-m<>N-myi> I r}

k=m+1 k=m+1

19) <> (N—m) £ ri>(N—-m—1) X ri<>b,_,>b,, m21;

k=m k=m+1

bpyZ2rmsy & Z '3/(N—m)§;‘3. I rf2(N-myi.,

k=m+1 k=m+1

3T rz(N-m—1)r2,,<>N-m) X r?

k=m+2 k=m+2

L
=2(N-m—1) X ri<>by+12b,, m<N-1.
k=m+1

The value m for which min Z  rZ (N —m)is achieved denote by . The value

0Ssm<N k=m+1

of M can be obtained uniquely (since the function f(x)=

l_x ? r*(t)dt, where r(t)

x

N
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is a monotone decreasing function, and has a single point of local minimum on
[0, N]) and satisfies the relations (1.8), (1.9). Therefore b=b,. According to the
duality (0.5) Theorem 1.2 is adequate to the calculation of the Kolmogorov
codiameter of an infinite-dimensional octahedron. Here let us remind the papers
of L. B. Sofman [29], [30] on calculation of the Kolmogorov diameter of finite
and infinite-dimensional octahedrons.

Putting m=[N/2] in Theorem 1.2, we obtain the following

Corollary. The inequality
by(B,(), 1,)<(2 £ r¢/N)'?

k>N/2
holds.
Theorem 1.3. Let 1<p<q<co. Then
N B_r-e
(1.10) by(B,(), I)=( = ry ).
k=1

Proof. The lower estimate. By Holder inequality for sums when
t=q/p>1, 1/t+1/t =1 (1/¢ =(a—p)/q)

N N N , ,
T e /rlP S Z ) (Z ™)
k=1 k=1 k=1

N A . B bl J
(1.11) . =(Z Il T Inle-q) e .

k=1 k=1k
Let take L y=lin{e,,..., ey}, =00;...,0, 1,0,...), k=1,..., N. Then the lower
estimate can be obtained from (1.11) and the definitions of by.

The upper estimate. From the definition of by it follows that

b=by(B,(), 1,)= sup inf ( bl e/ ( Z by )”

Ly xe Ly k=1

@ a0
= sup inf (T Palm) /(T Ixl® )"
Ly xeLy k=1 k=1

(1.12) (8754, keN).

We denote Ay={x={x,, keZ}el,|lIx||l,=1, card {k:|xy|=1}=N}. Then for
any subspace Ly < I of dimension N there exists xe Ly N Ay. Such and only
such points x are the kernel points of the unit ball for any N-dimensional
subspace. For this assertion see [31], 11.11.4. So from (1.12) we have

- w ®©
b<sup inf (= Pel9) " /( Z IxP )"
Ly xeLyna, k=1 k=1
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Using the inequality (a + |x|? u)'/? /(a+ |x|? p)'/P < a'/2~ 1P when a>0, u>0, |x|=1,
1=<p=<g<oo, we obtain from (1.13) the following:

N 11 N 1 1 N P,
bs sup (T )i r=(E w)i-s=( =7 Y)W
iy J=1 J i=1 i=1

In the proof of the upper estimate of Theorem 1.2 we used the method similar to
the one used by A. Pietsch ([31], 11.11.4) for calculating the lower estimate of
the Kolmogorov diameters of finite-dimensional sets.

§ 2. The Bernstein-Nikol’skii quantity and the Bernstein diameters of
the classes W3 and A3 in the space I,

Theorem 2.1. Let a=(x,,..., «,)ER", O<a,=...=a;4;<x4+,=5... S0,
l1<p<oo. Then

hy(W3, L) =by' (W3, L)% (Nlog™ N1,

Proof. The upper estimate. Let take L y=lin {¢!*?|ke O, (a, s)<m},

where m is taken from the condition N=m'2™*1. Then dimLy= X 21

1.9 (x,3)sm

R m'2m™*1=N. By the Bernstein inequality for the functions of several variables

1), < (Nlog "' N)*1 || x(-)l,V x(-)e Ly [14] we get the desired upper
estimate. '

The lower estimate. LetLy <= ﬂ, be an arbitrary subspace, dim L y=N.
We denote Ly=Lyn !, where t=lin {e!*?|ke1,, (a, )<m}, and m is taken
from the conditions N { m'g™1 , dimt<N/2, dimz '} N. Then codim t!<N/2,
and hence dim Ly = N/2. Let take an arbitrary function x(-)e L, x(*) # 0. Since
x(-)= X 6,x(-), then, using the Littlewood-Paley theorem, we obtain the

(s, ’! >m
lower estimate:

@1, %( 2%, %) 2,227 = 16,x2) 2],

(s,a)>m (s,a)>m

R 2" x4 (N log ™' Nyt |1x]),.
1 1 1
Theorem 2.2. Let 2<g<p<w, a€cR", r=a—;+;, -2-<r1=...=r,+,
<r4;=<...5r,, W=W?2 or A%. Then

hyW, L )=by'(W, L)Y (Nlog~'Ny1.
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Proof. By the inequality (0.1) the upper estimate of h, reduced to the upper
estimate of hy (W2, E,,). Put L y=lin{e'*"|keO,, (r, s)<m}, where m is taken

from the equality N=m'2™"1_. Then dim L, % N. Using the Bernstein-Nikol’skif

inequality [|x@ || » < lIxll (N log ™! N)y*1~1/P*1/a¥f x(-)e L y, we obtain the required
upper estimate

hy(W3, Lo« sup x|, /lxll, <(Nlog™' Ny1.

xe Ly

The lower estimate of the quantity hy is equivalent to the upper estimate of
the diameter by, which is reduced to the upper estimate of by(H%, L) by the
embedding W2 = < H2. At first we consider the case g=2. The deduction of the
lower estimate is based on the discretization method. V. N. Temlyakov noted that
in this theorem the lower estimate might be obtained in analogue to the structure
of the proof of Theorem 1.4 [18] (with technological variations). Using
Theorem 1.1, we have

Ix(-)llaz 'R sup 12 95,x(-)llz, R sup 2%~ Px, [, )

=||x||l,.uo(i.)’ A={4 Jxei"s A=26271P ke,

[BY] lp @ = sup || x, | (2. Oy "
On the other hand,
1 1 , 1
%)z, = (2 1,(-)ll ;2)7}% (Z 12 "2 x| q,)?

=lxl,2> B={t}ez"s m=2%""2, keO,.
Hence
by(A3, L,) < by(B,, (), L1, Z)=by(By, o(Ax~"), LZ")).
Using the embedding B, < B,, we get
by(A3, L,)<by(B,(Au"1), 1,(2").
psing Corollary from Theorem1.2 for the Bernstein diameter of an
Infinite-dimensional cube in space I,, we deduce the desired upper estimate for
by(Aj, L) when g=2, r,>1/2 (<> a,>1/p) as follows:

1 1 1 (1.5)
by(A3, L)<( =T 26:0+26-a+3-2D/N)2 ¥

(s, r)>m
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2m 1 1 m 1 1
Y (m'2r TP NER 27 Tt E T D=2"" Y (NlogT'N) "1,

1.4) N
where m is taken from the conditions X 2&V < Cm2™" < > m'2™"1 L N.
(. r)sm

1.2)

Let ¢=2. Applying the inequality [|x||, « [x(/>7'@ |, we reduce the upper
estimate to the proved case:

by(A%, L)« by(A%, Wi2-1a)=p (A3 12+, L,) < (Nlog™ Ny1
for a—1/p+1/9>1/2.

Theorem 23. Let 1<q<2<p<, aeR", r=a—1/p+1/2, 1)2<r;=...=
Fiey <Pis2S...Sr,, W=W? or H%. Then

hy(W, L)=by'(W, L)X (Nlog™'Ny1.

Proof. By the inequality (0.1) the upper estimate is reduced to the upper
estimate of the quantity hy(W2, L)). Take t=lin{e'®", ke(,, seS},
S={seN"|s;=1,i=1+2,...,n,(s5,1)=m}, where me N is taken from the condition

N=m'2" i.e. N=dimt ¥ N, so that N=>2N. Using (0.4), (0.2) and the definition
of the Kolmogorov diameter, we get
21 hy(We, L)=d_y(W;*, L,)Sdg_y(W;* N1, L,)
<dyW;ent L), Yp+1/p=1, l/g+1/g=1.

Using the Littlewood-Paley theorem and the embedding W;*cc
Wyet12=1p —e+1/P=1/2 — 77 when p'<2 by Lemma2, we obtain from
(2.1) the following

(22) hy(Ws, L) «<dy(Wi'nrt, L)<dy(Wi a1, L)

If x= £ 8,xeW;", then by Theorem 1.1 and the Litlewood-Paley theorem we
seS
have

12 %), 8 2™ ( Z 16, x()NF) 2 R27™ 172 ( Z Ix,IP,@p) s
s€S

se S
so if x(*)= Z 8,x(-)eW;", then ( T Ix,l%,g,)"*> «2™1*™2. On the other
se S se S
hand, by Lemmal we obtain
| £ 8,yll, <ISI'2~ (X |5, yllg:)

seS se S
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Rml2=12= ™ (2 |y, If,.ap)

se S

Performing the discretization in accordance with Theorem 1.1 and putting the
estimate of the diameters of finite dimensional sets, we obtain from (2.2) the
following

(1.3)
hy(We, L)< miz-tagmy+mz-ma'd (BY, 1) B

H mil2—Ua’gmry +mi2—mig' N 1/a’ N —1/2 H2{w, H(N log"N)Tl i

(1.2)
By the inequalities (0.1) and || [, = |- ll2 the lower estimate is reduced to
the quantity hy(AS, L ,), the order of which was calculated in Theorem 2.2:

hy(W2, L) > hy(H5, L)zhy@A3, L))R (Nlog™!Ny1.

Theorem24. Let 1<p,g<2, «€R”, 12<a;=...=1+1 <0425 ... Sa,,
W=W?¢ or H%. Then

hy(W, L)=by" (W, L)R(Nlog™' Ny1.

Proof. The upper estimate is reduced to the upper estimate of the quantity
hy(W$, L), the order of which was calculated in Theorem 2.3 (note that the
upper estimate was deduced without any restriction on the smoothnes a):

(0.1) 1.2) .
(A2, L)< by, L)' S hy(W5, L)« (N~ log™ Ny,

The lower estimate of the quantity hy is equivalent to the upper gtimate of
1.

. . (
the diameter b,. Using the embedding (0.1) and the inequality |- l; < Il ll2, we
have

(0.1)
. bN(W:9 Eq) <« bN(H;, Zq)ébN(H:! Zz)'
By the Hausdorff-Young inequality [32] ||y(-)||ng|| Vs WE get

lI(- )l gz 1R sup 2 |6, x()ll , = sup2® 2 |[{x }xe o, 1@, >
s ]
then

by(A%, L,) < by(B,., o), LE")Sby(BLA), LE),
where 4={4,, keZO"}, A,=2®9 if ke[],. Applying the upper estimate of the

Bernstein diameter of infinite-dimensional parallelipiped in the space I, (1.10) we
obtain the required bound
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(1.5)
by(As, L)< ( T 2&V2-2ea /N2 K

(s,a)>m
Y (m! a(-2e+1) Y "
X (m'2%1 INZR27™ R (N~ log' N)*1,
where m is taken from the conditions

(1.4) N

T 26V < Cmh2™m<—, m2™t K N.

(s,a)sm 2

If 1 <q<p=<2, then the smoothness condition for a can be weakened for class

(1.2)
W5. Here by the inequality |||, < ||- ||, the lower estimate of hy(W¢, L) is
reduced to the known estimate of hy(W%, L) (see Theorem2.1)

hW3, L)ZhyW3, L)% (Nlog™' Ny,

Thus the following theorem is proved.

Theorem2S5. Let 1<g=<p=<2, aeR" O<a,=...=0;4;<+2=<... S0,
Then

hy(Ws, L)=bi'(Ws, L)Y (Nlog™ Ny1.

Theorem 2.6. Let 1<p<g<w, aeR", 1/p—1/g<a,=...=a;41<x4+2< ...
<a,. Then

hy(We, L)=by' (W2, L)X (N~"log' Ny1.

Proof. The upper estimate. Take Ly=lin{e'*?|ke,, (a, s)Sm},
1.4)
where m is taken from the condition N=m'2™*1. Then dimLy= X 2¢&V ¥

. (s,a)sm
m'2™*1=N. By the Bernstein-Nikol'skii inequality for the functi(;'ns of several
variables [|x®X(-)||, « (Nlog™'N)*1 |x(+)|l, for x(-)eL, we obtain the desirable
upper estimate.

By virtue of the inequalities || x®)(- )Il,. 2 ||x"’( Mpgs I II, s || llgq
lower estimate of the quantity hy(W35, L,) is reduced to the lower &stlmate of
hy(W3,, L) when 1<p,<2=g,. That is why we shall give the lower
estimate of hy(W3, L) when 1<p<2<g<oo.

Using the lower wtnnate for ||x® ()| » and the upper estimate for ||x(- )II,
from Lemmaé6, we get
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(1.6)
hy=hy(W3, L)=inf sup [xC),/l1x()lg >
Ly x()eLy
inf sup (Z12%98,x17)"/2/(Z 18, x11)"'2.
Ly x(eLy * s
Likewise the proof of the lower estimate for hy in Theorem 2.1 it suffices to
consider the functions x () of the form x(-)= X &,x(-), where m is taken from

(s, x)>m

the equality m'2™*1=N. Using the discretization from Theorem 1.1, we obtain

1 gty
By»inf sup T 2% PxlEa,/ EI1274Txlia,=

Ly xeLy (s,a)>m (s,a)>m

=inf sup Z[2¢"9x,||2/Z 1279 x, 1|7,
) Ly xeLy s s )
where r=a—1/p+1/q, e=(e,,..., &)eR", g=¢ i=1,..., I+1; &=3ex, /(2a,),
i=l+2,..., n, e>0 moll be chco)scn later.
Let Ay={x={x,, keZ"}el,@Z")|I{x:}|o <1, card{k:|x,|=1}2N}.
It is easy to show (the similar reasoning was used by A. Pietsch [31], 11.11.4) for
the lower estimate of dy(B}, I7), ¢<p) that for any arbitrary subspase L, of

dimension N there exists an element xeL, N Ay. Thus

.

k>  inf (224779 ||x,||2)/(£272 9 ||x,[12).

LN,xsi~n4~ s
Since
1 1 e
Ixl,=( £ Ixul?)?2( = |xul®)? =lIx,lq,
ke O ke Oy

2p
when xe Ay, then h} > inf 22010 | x || 4 /2720 |Ix |2,
]

Ly.xeLynAy 8

Let xe Ay, then 0<n,<2*Y, £n,>N, where n, d-_°f||x,||:.
Thus, *

(23) h3 > inf{%,/Z,|0<n,<2¢D, En,2N},

where zl= zz(:,r-—n)n'zn’ zz= 22-2("’)71,2/'.
The upper estimate of £,. By the Holder inequality for sums when
t=q/221, 1/t+1/t'=1 (1)t =1-2/q)
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_zn 2~ 2(s, 5)5(2"4 ) ( y 2 2(s, e)t’ )t_'U
(s,a)>m
(1.5) 2 1 _2m 2 2 _2m
R En)im"2” %1 =(Zn)im' P2 @
. 3
(since &, /a,=... =41 /41 =80, <E42 /4 2= ... =8, [0, = Ea/a,).

The lower estimate of X,. By the Holder inequality for sums when
z=2/p=1, 1/z+1/2’=1 (1/Z’=1—p/2)

p n,= b n, 2(3. r—e)p 2—(:. r—e)p é(z n, 2(.!. r—l)pz)l/:

(1.5)
X( b 2—(s.r—t)p:')l/:' H (z"'Z/pZZ(l.r-l))p/Z ml/:'
s

(s,a)>m
24) X 27mry ~Oplay — F /2y 1=pI2) 3~ miry —e)play
. & 'r,_la,-l ri—g; 1 1 3eq
since =, = and = a.——+——-— =2
%y a1+1 o (e P q )/ o 2a ( )/
a,>;—‘= 1 —"——(——a)/az1 if £>0 is such that (1/p— l/q) (l/azl — 1/“t)>3/(2°‘1) for

1—l+2 From (2.4) we obtain the lower estimate for X,

Z,»>(Z ,,')z/pmm—z/p)zim(r, —e)ay
s
Putting the wtimaies of Z, and X, in (2.3) and extracting the square root, we
have the desired lower estimate for hy
1 1 1 1 mr 1 1 1 1 mr
hy>(Zn,)? " Tm 7~ 2% 2Nr-amp =924
s
P tr-D
=291"17PT 8 _omYU(Nlog ™' Ny 1.

The theorem is proved.
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