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partially ordered self-adjoint operators on a Hilbert 3
order I:o;hvirgence iz :table .:th :r. th(:f c‘lnia:::rfmmjl_‘hh r'.ﬁ' for compact self-adjoint
Fenurbahom of the identity, and for all self-adjoint operators (in infinite dimensions). These results
ollows from the fact that, in a monotone g-complete partially ordered F-space with a closed cone,
stability and the diagonal property follow from the o-Lebesgue property.

1. In this paper, we study the behaviour of order-convergence for classes of
Hilbert-space operators. The motivation for this work comes from [4], where one
of the authors (N. P.) develops a theory of integration in partially ordered vector
spaces, using order convergence. The absence of lattice structure has to be
compensated by the imposition of some “regularity” requirements for the
order-convergence of sequences. p

We show that these requirement are fulfilled for the space of self-adjoint
compact operators on a Hilbert space, and for the Von Neumann.—Schatt.en
classes. In fact, we show that they are fulfilled in any space equipped with
a metric suitably related to the order structure. .

If X is a partially ordered vector space (p. 0. v.s.) with a positive cone X *, we
say that a net {x;} in X order-converges to x in X (written (o)-lim x,=x) if
there is a net {} in X*, decreasing monotonically to zero, such that
—u;Sx;—xSu, for almost all i. The convergence is said to be relatnvel_y
uniform (written (r. u.)-lim x,= x) in case we may choose u;=4,u for some u in
X* and A4€R, 4)0. X is said to be monotone complete (resp.,
monotone g-complete) if increasing order bounded nets (resp., sequences)
have suprema in X. In a monotone o-complete space, (r.u.)-convergence for
sequences implies (0)-convergence. If they are equivalent, X' is called st_able. Xis
said to have the diagonal property (D.P) if, whenever {x..} is a double
sequence in X such that (0)-lim limx,..,=x exists in X, there is a strictly

increasing sequence {n,} in N such that (o) li.x'nx. X
We need the following facts:
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Proposition 1.1. [4] Let X be a monotone a-complete p.o.v.s. Then X has the
D.P. iff X is stable and, for each sequence {y,} in X*, there exists a sequence {1}
of positive real numbers and a ye X" such that y,<A,y for all neN.

Definition. [1] A topological p.o.v.s. (X, 7) is said to have the Lebesgue
(respectively, o-Lebesgue) property iff, whenever {x;} = X* is a net
(respectively, a sequence) such that x;]0, it follows that x; T, 0.

Proposition 1.2. [3]. Let (X, || ||) be a partially ordered Banach space with
a monotone norm and a || ||-closed cone X*. Then X is monotone complete and has
the Lebesgue property if and only if X is monotone c-complete and has the
o-Lebesgue property.

2. In p.o.v. spaces whose topology is determined by a basis of
neighborhoods of the origin consisting of solid sets (i.e. sets V with the property
that xeVn X+ and —x<y<x implies ye V), stability implies the o-Lebesgue
property. In the converse direction, we prove the following:

Theorem 2.1. Let (X, t) be a monotone o-complete p.o. F-space (i.e. T is

complete and metrizable) such that X* is t-closed. Then stability follows from the
o-Lebesgue property.

Proof Choose an invariant metric d defining the topology t and set
p(x)=d(x, 0) (x € X). Let {u,} be a sequence in X * such that u, | 0. The o-Lebesgue
property implies that u, %, 0, and hence there exists a subsequence {u,, } such that

plu, } <277 Set x,= E 2%, . For mzl21, we have:
k=1

F(xm'—xl)ég z 2%

k=l+1
and hence {x,} is a Cauchy sequence in X *, which therefore t-converges to an
element xe X~. But
0=2%, =x,Sx=>u, <27*x for all keN.
Setting u=x+ X u,eX*, A,=1 for 1<n<n, and A,=27* for

<
nsSn<n,., we obtain & sequence 4, — 0, such that u, <A1, u for all neN. This
shows that (r.u.)-limu,=0. Thus X is stable, since it is monotone o-completely
hypothesis. :

R emark. Metrizability is essential in Theorem 2.1. This will be shown in the
next section. :

Theorem 2.2. Let (X, t) be a monotone o-complete p. o. F-space with a t-closed
cone X*. Then the o-Lebesgue property implies the Diagonal Property.

Proof. By Theorem 2.1, X is stable. Thus, by Proposition 1.1, it is sufficient
to show that, if {y,} is any sequence in X *, there are 4,20 and ye X* such that
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Y.< 4,y for all ne N. Replacing y, by I y,, if necessary, we may assume that {y,}
k=1
is increasing. '
Let the topology t be defined by a translation — invariant metric d. Now
limlimd(n~'y,, 0)=0, hence, by a diagonal argument, there exist strictly

increasing sequences {n,}, {m,} in N such that
d(n{‘y,,,k, 0)<27* for all keN.

This shows that £ n, ! Ym, =Y exists, since the partial sums for a Cauchy
k=1
sequence, and ye X*, since X* is 1-closed. Thus 0= Yy SN Y-

For each neN, let k be the least integer such that m,=n and put 1,=n,.
Since {y,} is increasing y,< Ym, 4, and the proof is complete.

3. We now apply the results of the previous section to spaces of operators on
a Hilbert space H. We denote by L ,(H)= L, the real Banach space of all bounded
self-adjoint operators on H, ordered in the usual way: T20 iff {(T¢, ) =0 for all
¢eH. L, is monotone complete, since if {T;} is an order-bounded increasing net,
then it converges in the strong operator topology (SOT) to a Te L, which is the
supremum of {T;} ([2], Lemma 5.1.4). Also, if an increasing net {S;} in L, has
a supremum S, then clearly S =SOT-lim S;. Therefore, (L,, SOT) trivially has the
Lebesgue property, hence the o-Lebesgue property. However, (L,, || ||) does not
have the o-Lebesgue property (unless, of course, dim H < + oo !). This may be seen
by the following: '

Example 3.1. Let {¢,} be an infinite orthonormal sequence in H, and Q, be
the projection onto the closed subspace spanned by {e,:k=n}. Then clearly
Q,10, but |Q,ll=1 for all neN.

Thus L, cannot be stable, and hence cannot have the D. P., by Theorem 2.2.
This, incidentally, shows that metrizability is essential in Theorem 2.1, since
(L,,SOT) is monotone g-complete, has a closed cone, and is sequentially
SOT-complete (by the principle of Uniform Boundedness).

We denote by C,(H)=C the partially ordered real Banach space of all
self-adjoint compact operators, and by Cf(H)=Cf(1<p< +c0) the partially
ordered Banach space of all self-adjoint operators in the Von Neumann-—
Schatten class CP. |- |, denotes the usual operator norm.

. _Theorem 3.2. For 1<p< + oo, the following statements hold:
(l.). CF is monotone complete, ’

(i) (CE, ||-1|,) has the Lebesgue property,

({li) CF is stable,

(@) CP has the Diagonal Property.

Proof. The positive cone is clearly | - || p-closed and the norm is monotone.

us by Proposition 1.2, to prove (i) and (ii) it is sufficient to consider sequences.
Then stability and the Diagonal Property will also follow by Theorem 2.1 and 2.2.
a) To show that Cf is monotone a-complete, consider an increasing sequence
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{T,}in Cf, such that 0= T, <S for all ne N, where S is in C{. As observed earlier,
T, SOT-converges to a bounded self-adjoint operator T. By [5, Theorem 2.16,
p-38], we get |T,—T|,—0 (n—» + o0), and hence TeCf. Moreover, T is the
least upper bound of fT } in C§.

b) To show that Cf has the o-Lebesgue property, let {T, } be a sequence such
that T,]0 in Cf. Again, T, SOT-converges to a bounded operator T. Thus
(T,&, E) 1LT¢, & for all feH, showing that 0<T<T,, so that T is in Cf. Since
inf T, =0, we must have T=0. Hence SOT-lim T,=0. Since T,=< T, for all n, the
theorem just quoted gives ||T,|, — 0.

Remark. Observe that C{(H) has no order unit (unless dim H < + o0).
Indeed, let UeCf be an order unit. Then its eigenvalues u, must be strictly
positive. Choose a subsequence {u,,t} which is p/2-summable. Let T e Cf be the

operator with the same eigenvectors as U, and eigenvalues ./ u, if n is some n,

and O otherwise. If there were a 4 such that TS AU, then \/u, 21“ for all k,
contradiction (for p= + o0, one may use T= U"z)

Proposition 3.3. The p.o. Banach space X=C,(H)® R of all compact
self-adjoint perturbations of the identity on an infinite dimensional Hilbert space
H does not have the Lebesgue property. X has the o-Lebesgue property if and only if
H is non-separable.

Proof. (i) Let # denote the directed set of all finite dimensional subspaces of
H, and, for Fe #, let Q. denote the projection onto F - Clearly {Q,: Fe #} is
a net in X (for Qp =I—P,, where P, is the (compact) projection onto F)
decreasing monotonically to zero. Since ||Qp||=1, the Lebesgue property fails
for X.

(ii) If H is separable, {Q, } may be taken to be a sequence (as in Example 3.1)
and thus the o-Lebesgue property also fails.

(iii) It remains to show that if H is not separable, then X has the o-Lebesgue
property. Consider a sequence {T,} in X* such that T,}0. Write T,=K,+4,1,
with K, € C,. It is well known that (ker K,)!is a separable reducing subspace for
K, (being. generated by the (countably many) eigenvectors of the non-zero
eigenvalues of K,). Thus H,=V (Ker K,)_Lis a separable (hence proper) reducing

subspace for {K,}, hence also for {T,}.

Fix &,eHp, & # 0. Since T, &y, &>=4, &% it follows that {4,} is
a decreasing sequence. Let A=inf1,>0. We claim A=0. Indeed, let T=AP,,
where P, is the projection onto the subspace spanned by &,. If {=¢,+¢,€H is
arbitrary, with é,e Hd &,€H,, then, for all neN,

KT, & 2T, ¢y, §1024<Ey, §102AP¢, &> =LTE, &.
Thus OST<T,, hence T=0, so that A=0. Hence
(o)-lim K, =(0)-lim (T, — 4,I)=0.

But {K,} = C,, which is stable, and thus K, -+ 0 relatively uniformly, hence

in norm. Thus also |T,|| —+ O, and the proof is complete.
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Corollary 34. (L,(H), || II) satisfies the conclusions of Theorem3.2 iff
dim (H)< + 0.

Proof. Immediate from Theorem 3.2 and Example3.1.
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