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In this article the constructions of certain hyperfields are introduced. These hyperfields have the
property to be generated by the difference of every non zero element from itself, and so they can be
characterized as monogene h elds. The isomorphism of such hyperfields to the quotient
hyperfields is also studied and it leads to the genesis of a new problem in the theory of ficlds.

Introduction

The notion of the hyperfield was introduced by M. Krasner in [2].
A hyperfield is an algebraic structure (H, +, .) where (x, y) = x.y is an internal
composition of H (i.e. for every x, yeH, x.yeH) and (x, y)—>x+y is
a hypercomposition of H (i.e. for every x, ye H, x+y < H). This structure satisfies
the following axioms:

I. (H, +) is a canonical hypergroup (see [8]), i.e. the next axioms are valid:

i) x+y=y+x for every x, yeH;

i) (x+y)+ow=x+(y+w) for every x, y, weH;

ii1) There is an element Oe H such that x+0=x for every xeH;

iv) For every xe H, there is one and only one x’ € H such that 0ex+x’. x is
denoted — x and it is called the opposite of x. We write x—y instead of x+(—y);

V) wex+y i (;)li&s that yew—x.

Il. H=H* U {0}, where (H*, .) is a multiplicative group.

III. The distributive axiom holds, i.e.

o.(x+yY)=0.x+0.y, (x+y).0o=x.0+y.o.

Remark. If x, y are subsets of H, then X.Y signifies the set
{x.yl(x,y)€EX+Y}, and x.Y, X.y have the same meaning as {J;).Y, X.{y}
respectively. Also X x Y signifies the union U, ,cxxy(X+Y), and x+Y, X +y have
the same meaning as {x}+Y, X +{y} respectively.

In [2] M. Krasner uses a hyperfield which is constructed in the following
way: Let K be a valuated field whose valuation is ||, let p=0 be a semi-real
number [1] of species 0 or —, and let n, be the equivalence relation in K which is
defined as follows:

%0, f=ae |2 _115p s p—aispial
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The classes mod =, are cycles C,=C(¢, p|¢|) with center £ € K and radius p|{]. The
set of these classes K* = K/n, become a hyperfield if we define the product of two
elements to be their setwise product and their sum to be the set of the classes
which are contained in their setwise sum. This hyperfield was named by
M. Krasner residual hyperfield. Next M. Krasner in [3], generalized this
construction, by presenting the quotient hyperfields. The construction of these
hyperfields is as follows: Let F be a field and let G be a normal subgroup of its
multiplicative group. Then the set of the classes xG, x e F becomes a hyperfield, if
we define their product and their sum as we did in the previous method. In the
end of this section we prove two propositions that give conditions under which
the sum of two elements contains the participating elements, or not..

Proposition 1. In a hyperfield H the sum x+y of every two elements x,y # 0
contains these two elements if and only if, the difference x — x equals to H, for every
x#0.

Proof. Let us suppose that xe x+y for every x, ye H. Then for every ye H
we have, yex—x, so H € x—x. But x—x < H, thus x—x=H. Conversely, if
x—x=H for every x # 0, then for every x, ye H we shall have yex—x, thus
xXeEXxX+y. .

Proposition 2. In a hyperfield H the sum x+y of évery two elements.k, y#0
does not contain these two elements if and only if, the difference x—x equals to
{x, —x,0} for every x # 0.

Proof wex—x if and only if xew+x. So if x, y¢x+y, then we have
x—x < {x, —x, 0}. Now if for some x € H*, holds x-—x={0}l=hthen'for any ye H*
we shall have: x.(y—y)= x.y—x.y=(x—x).y=0.y=0. Thus

x.(y—y)={x.t|tey—y}={0}.

So for every tey—y we have x.t=0, from where it derives that t=0, and
therefore y — y={0}. Now if for every xe H, the relation x—x={0} is valid, then
H is a field. Indeed, for every a, bex+y we have:

a—b = (x+y)—(x+y)=(x—x)—(y—y)={0}

so a=b. Thus x or —x must belong to x—x. But then, because of the
distributivity, x —x={x, —x, 0}. Conversely now. If x—x={x, —x, 0} for every
xeH, then for every x, ye H*, with y # +x, holds: y¢x—x, so x¢x+y.
Similarly yex+y, and so the proposition.

Construction I _
Let G be a multiplicative group and let (H*, .) be its direct product with the
multiplicative group (1, —1). We consider an element 0 with the property
«.0=0.0=0 for every ae H* L {0}.
We define in H=H* U {0} a hypercomposition “+” as follows:

[ | (x, i)+(y, j)={(x’ i)s (y’ i)}
if (x, 0)#©,J), i je{l, —1},
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1)+ ] _l)=Hs
= (5 D020+ (6 D=(x 9
or every xeG. ie{l, —1}

The structure (H, +, .) is a hyperfield. Indeed, the hypercomposition “+” is
commutative and the 0 is its neutral clement. Also (x, — 1) is the opposite of (x, 1)
because:

Oe(x, 1)+(x, —1)=H.

Next, we shall denote the arbitrary element (x, i) of H by x*, and (x, —i{) by —x*.
So, for the proof of the associativity we dxstm‘ﬁgmh the following cases:
i&ifx‘,y‘,z‘arediﬂ'erent from 0 and each one different from —x*, —y*, —z*,
en A
xA+0A +zA)=xA +{yA, zA}z(xA +yA)U(xA +zA)
={x*, y}u{x*, z*}={x", y*, z*}
similarly, (x* +y*)+z"={x", y*, z*};
ii) if x*, y*, z* are different from 0, but one of them equals to one of —x*, —y*,
—z", e.g z"=—x", we have ‘
x*+@p*+z")2x" +(—x")=H
and xX+y" )+ 2X+(—x)=H;
iii) if one of x*, y*, z* is 0, the associativity holds. Now let us verify the axiom
Lv. Suppose that z*ex"* +y*, then:
i) fy*# —x",0thenx" +y* ={x", y"}, thus z* =x" orz*=y". So we have:
x*e{z", —y"}=z"+(-y")
or xEH=f+(_yA);
ii) if y* = —x", then x* +y* =H and for every z*e€ H we have:
X=—yet+(—));
iii) if y* =0, then x* +y*“=x" and so x" =X —0=x"—y*. Now for the
verification of the distributive axiom we distinguish the cases:
i)if x*#0 and y* # —z*, O then:
x*.p*+3")=x".{y", z*}={x".y", ¥*.z*}
and since x*.y* #0, x*.y* # —x". 7, we have:
.y +xtzt={x"y", x".z*};
ii) if x*#0 and y* # —z" we have: :
x*. (" +z")=x".y" +(=y*)l=x".H=H
and X y+xX £=x y+(—x y)=H.
Finally if x* =0 or y* =0 Or z* =0, the distributivity also holds.
Another h eld can be constructed as follows: Considet a multiplicative grou

G, and a bilaterally absorbing element 0 (i.e. 0. x=x.0=0 for every xe G U {0})
and endow the set K=G u {g} with a hypercomposition “+” defined as follows:

s x+y={x, y} for every x, yeG with y # x, -
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s x+0=0+x=x for every xeK,
a X+x=K for every x # 0.

Then (K, +, .) is a hyperfield.
Also the following construction gives us a hyperfield: Let (K, +, .) be a field. We
define in K a hypercomposition “+” as follows:

a x+y={x, y} for every x, yeK* with x # y,
x+0=0+x=x for every xeK,
a X+(—x)=K for every xeK*.

Then the structure (K, +, .) is a hyperfield.
The proposition that follows has been proved by A. Nakassis.

Proposition 3. There are quotient hyperfields in which x+y={x, y}, for every
two elements x, y with x# —y and x, y #0.
Proof. Let K be an ordered field, L an ordered additive group and L,

a subgroup of L such that, for every 1€ L should exist 4, € L , such that 1 <4, (c.g.
L=R and L,=Q or Z). Next we construct the set KL as follows:

k
T A,04

KL={q(0)|q(0)=3*——1},
Z B;0%
j=1

where:

a) the A; and the B; belong to K,
b) the o; and the f; belong to L,
c) for the a; and the B; holds:

e, 2a,=...20 and B, 26,=... 28,

d) A, #0,i=1, 2,..., k unless g(0) is the zero element of KL. In this case k=0,
while in all the other cases k=1,

e)t=1, B;#0 for j=1, 2,..., t and B,=1.

KL become a field if we define the addition and the multiplication as in the case of
thcfrautional functions. Next we consider the subgroup G of KL*, which is defined
as follows:

k
| T A,0%
G={n(6)| n(0)= 3*——, 4,>0 and a,—B,€L,}.
Z B,0%
j=1

Now if we choose one element a from every class of L/L , then, KL /G is the set of
+0°G. The sum of two elements of KL/G has the form (+60%)G+(+0%)G. An
arbitrary element of this sum will have the form:

ELENC)EIELLA()]
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(suppose that when we have “—” in one of the above, then f # «). One can always
assume that =, (6) and =,(60) have the same denominator, and so, if « and # belong
to different classes of L/L,, then the highest exponent of °r,(6) will never be
equal to the highest exponent of 6%n,(6), and therefore the result:
[+6%7,(0)]+[+£6°7,(0)] ,
will belong to the one or the other term of this sum. On the other hand, if =g,
then:
0°G+0°G=0°G.
Construction II

Let (H, +, .) be a hyperfield. We define in H a’ hypercomposition “4 as
follows: :
mx# y=(x+y)u{x, y} if y# —x, x, y#0,

e X# (—x)=H for every xe H*,

e X# 0=0# x=x for every xeH.

Then the structure (H, # , .) is a hyperfield.

Indeed it is obvious that the new hypercomposition is commutative and that O is
its neutral element. Also the opposite of x in (H, # , .) is the same with the
opposite of x in (H, +, .), since, if 0ex# x’ and x’ # —x, then we shall have

Oe(x# x')u{x, x'}and O¢x# x’

which gives x=0 and x'=0.

Next let us prove the axiom I. v. This axiom obviously holds when y=0.If y= —x
then x# y=H, so for every we H we must have xew# x, which is true. Finally if
y # —x, 0, then from the relation wex# y derives that we(x+y) L {x,y}, so
wex+yorwe{x,y}. f wex+y, then xew+(—y) = w# (—y). f we{x, y}, then
w=x or w=y. If w=x then xex# (—y) for every yeH and if w=y then
w# (—y)=H, which contains x. Thus the axiom I v. holds. A
Now for the associativity we have: If —xey# w, then —wex# y and so:
x# (y# wy=H=(x# y)# w. If y=0 the proof is obvious. Finally, if y # 0 and
—x¢y# w, then: —wé¢x# y, y# —w, 0, —x¢y+w, —wéx+y, x# —y and
x # —w. Thus we have: B

x# (y# w=x# [0+w)u{y, w}]
=[x# y+wIu(x# YU(x# w)
=x+@y+w)u{x}u(y+w)
vix+y)uix, yJux+w)u{x, w}
=x+@y+wu{x, y, w}
Ux+y)ux+w)u(y+w).

In a similar way we have that:
(x# ) # w=x+(@+w)u{x, y, w}



Constructions of Hyperfields 255

ux+y)ux+w)u(y+w).

Finally for the proof of the distributive axiom we have:
If x # —y, then:

x# y).w=[x+y)u{x, y}l.w
=(x+y).wu{x.w,'y.7w}
=(x.w+y.wpu{x.w, y.w}
=(x.wH# y.w(x.w#—y .w).

If x=—y then
(x# y).w=H.w=H=x.w# (—x).w=x.wi y.w.

Thus (x# y).w=x.w# y.w for every x, y, we H. Similarly we can prove that:
x.(y# w)=x.y# x.w. The multiplicative axioms are still valid and so (H, # ,.)
is a hyperfield. The construction we have just developed shows that every
hyperfield can give a new hyperfield, which can be generated as the difference of
every non zero element from itself.

ORemark. If (H, +, .) is field, then x# y={x, y, x+y} when x # —y, x,
y#0. '

Example. Let us consider the quotient hyperfield (C/R*, +, .) where C is
the field of complex numbers and R* the set of the positive real numbers. The
elements of this hyperfield are the rays of the convex field with origin the point
(0, 0). We see that the sum of two elements aR*, bR* of C/R* with aR*  bR™*
gives the interior rays xR* of the angle which is created from these two elements
of C/R™, while the sum of two opposite elements gives these two elements and the
0. Nowlet us agply the above construction to (C/R*, +, .). We observe that the
sum aR* +bR™ of two elements aR*, bR* with aR*# —bR™is the set of all the
rays that are contained in the angle which is constructed from these two elements
(i.e. including the two sides of this angle), while the sum of two opposite elements
is the whole C/R™.

Proposition 4. Let H=F/G be a quotient hyperfield of a field F with a
multiplicative subgroup G of F*. If we apply the above construction on F/G then the
new hyperfield which derives is isomorphic to a quotient hyperfield.

Proof. This proof is based on the same idea with the proof of Proposition 3.
So we consider the field of the quotients F(x) of polynomials’ ring over F. We can
suppose that in all the rational functions the coefficient of the highest power of the
denominator’s polynomial equals to 1 (if not, we can get it with a simple division).
Now for the group G of F there exists a corresponding group Q in F(x), which is
defined as follows:

Q= {n(x)e F(x) with «,eG}

where «, is the coefficient of the numerator’s highest power. Next we get the
hyperﬁefd H” =F(x)/Q and we consider the function ¢:H — H"~, defined as
follows: ¢(aG)=aQ, for every a € H. This function is injective, because, if «G # G

fhea aQ={n(x)e F(x) with a,eaG}
BO = {n(x)e F(x) with- a,e€pG}
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*ad

thus aQ # Q. Moreover, let n(x)e F(x), then if a, is the coefficient of its highest
power, then (1/e,)n(x) belongs to @, and so m(x) belongs to «, 0, and therefore ¢ is
also surjective. Now let 7,(x), m,(x) belong to @ and

k
z ax!
i=1
7 ()= "3

= B,

(we sup that the rational functions have the same denominator and if not we
make them such).
Now we consider the sum aQ+ B0 with aQ # —pQ. Then
i) if k> Kk, then the highest &ower of x in an,l(;?+ Br,(x) will have coeflicient
axi, thus am,(x)+ pr,(x) will belong to « Q, while the hi evsvtdrower of x in
an,(x)+ Br, (x) will have coefficient fa, , and so ax,(x)+ px, (x) will belong to SQO.
it) if k=K', then the coefficient of the hi est&wer of ar, (x)+ Br,(x) will be
aa, + fa i and when the a,, a; get, one after other, all the values in é, then this
coefficient will get all the possible values in aG+ fG.
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A problem in the theory of fields

The problem which arises after the above constructions of the monogene
hyperfields and from the propositions that have been proved is:

Are there monogene hyperfields that are non quotient hyperfields?

But this problem leads to another problem in the theory of fields. Indeed: Let
H be a monogene hyperfield, and let us suppose that H is isomorphic to some
quotient hyperfield K/G. Then in K/G the equality xG — xG = K/G holds for every
xG # 0. Thus G—G=K/G, and so for K the equality G—G =K must be valid.
And the question arises:

Which fields can be written as a difference of a subgroup of their multiplicative
group from itself, and which are these subgroups?

In [4] an answer to this problem is given for the case of some finite fields.
We remark that in [5], [6], [7], [9] one can find theorems which prove the existence
of non quotient hyperfields. |
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