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On a Problem of Sendov Involving an Integral Inequaiity
D. S. Mitrinovi¢*, J. E. Pelarié*™

Presented by Bl. Sendov

In this note we shall give generalizations of a problem of Bl Sendov [1].

The following problem is proposed by Bl. Sendov [1}:
Let fbe a nonnegatlve concave function on [0, 1]. Then

1) jf(x)dxéB"jx"f(x)dx, n=0, 1, 2,...

Solutions of thls problem are given by K. Doev and D. Skordev. In fact,
D.Skordev proved the followmg inequalities

2 2
) mjf(z)dtgjff(t)dtg —zjf(t)dt. n=0, 1,...

Here we shall show that (2) is a simple consequence of the well-known
Cebyﬁev inequality for monotone functions and of some simple properties of
positive concave functions.

Cebysev’s inequality. Let p:[a, b]— > R be an integrable nonnegative function,
and let f and g be two functions monotonic in the same sense on [a, b). Then

&) I p(x)de P(X)f(x)g(x)dx = I p(x)f(x)dx f P(x)g(x) dx.

If {ldmg g are monotonic in the 'opposite sense, then the reverse inequality in (3) is
va

Further, if f:[a, b]—>R is a nonnegative concave function, then
x — f(x)/(x—a) is nonincreasing, and x — f(x)/(b—x) is nondecreasing.

So, we have the following result:

Theorem 1. Let p:[0, 1]— >R be a nonnegative integrable function and f: [0,
1]— >R be a nonnegative concave function. If g:[0, 1]— >R is a nondecreasing
Jfunction, then

1 1 1 1
@ { (1—x)p(x)g(x) dx ,g p(x)f(x)dx/ {(l —x)p(x)dx = { P(x)g(x)f(x) dx
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1 1 1
3 g xp(x)g(x) dx £ p(x)f(x)dx/ £ xp(x) dx.

If g is a nonincreasing function, then the reverse inequalities in (4) are valid.
Proof. Using the substitutions: p(x) - xp(x), f(x)—f(x)/x Cebysev’s
inequality (3) gives the second inequality in (4), and using the substitutions:

p(x) =2(1 —x)p(x), f(x) = f(x)/(1—x)(3) gives the first inequality in (4).
For p(x) =1, g(x) = x* (a>0), (4) becomes:

2 1 1 2 1’
5 ———(f(dt= | f()dt = —= [ f(t)dt,
©®) T Ous [Fods 510
i.e. Skordev’s result is valid for every real number a=0.
Ifae(—1 ; 0), then the reverse inequalities are valid. (Of course, we suppose
that integral [¢f(f)dt exists.)

Now, let ous consider the function x— y(x)=2-3*—(x+ 1)x+2), for x=0.
We have, »(0)=0, »(1)=0, and y”(x)=2-3*(log3)>*—2>0. So, y is a convex
function and therefore y(x)=0 for x=1, i.e.
(@a+1)a+2)2<3° (a21).

Therefore, Sendov’s ienquality
1 1

©) [f(x)dx<3°[x*f(x)dx (a2 1),
0 (V]

is valid. (Of course, for a=0 we have an identity.)

Remark. In fact, we can also suppose that f is such function that
x = f(x)/(1 —x) is a nondecreasing function. Similarly, in Theorem 1 we can also
suppose only that f is such function that x — f(x)/x is nonincreasing and that
x — f(x)/(1—x) is nondecreasing.

Similarly, we can prove the following theorem:

Theorem 2. Let p, f, g, h,, h,:[a, b] = R be integrable functions, and let p, h,,
h, be positive functions on (a, b).
! If x — g(x) and x — f(x)/h,(x) are monotonic functions in the opposite sense,
then

b b b b
() [ p(x)g(x)f(x) dx S (§ by (x)p(x)g(x)dx / § by (x)p(x) dx) § p(x)f(x) dx.
If x ~ g(x) and x — f(x)/h,(x) are monotonic functions in the same sense, then

b b b b
®) [ P(x)g(x)f(x) dx 2 ( | by (x)p(x)g(x) dx / | b (x)p(x) dx) | p(x)S(x) dx.

Of course if x — g(x) and x — f(x)/h,(x) are monotonic functions in the opposite
sense and aslo x+ g(x) and x — f(x)/h,(x) are monotonic functions in the same
sense, then the both inequalities (7) and (8) are valid, i.e.
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b b
©) (§ ha(pgx) dx ] § hy(Iplee) dx) § PN () dx
/ .
< P(x)g(x)f(x) dx

' [ ] b
< (§ h CP(Ig0) dx / § By (Ipl) ) § Pdgx)f () dx.
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