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In the present J,:ger the existence of non-zero solutions in HJ}(Q) for the equation
Au+a|u|+ Au=0 is studied. The main result is that if 4, is an eigenvalue of the Laplace operator, then
there exists an interval for a, nding on the adjacent eigenvalues only such that there are at least
two continuous functions A (a)<A*(a) such that the equation has non-zero solutions, i.e. that
bifurc;ot‘iion occurs from any eigenvalue. Thus results concerning simple ecigenvalues only are
extended.

The present paper treats the existence of nontrivial solutions in H} (Q) of the
equation

1) Au+ajul+Au=0

in a bounded region Q = R". Sometimes this equation is written in the form
) Au+A*tut—A"u" =0,

where u* =max (u, 0), ¥~ = —min (u, 0), the relation between the parameters «, 4,

A* and A~ being obvious. In a number of works the set of (A*, A~)e R? for which
the equation (2) has non-trivial solutions is called resonance set. Adopting this
terminology, we call also resonance set the set of those (a, 1) € R?, for which (1) has
‘non-trivial solutions. The study of this set is far from complete. On the other
hand, the condition (¢, 4) not in the resonance set makes part of the hypotheses
of a number of theorems (cf. [1]). Thus the structure of this set is of certain interest.
Some partial results are contained in [2] and [3]. In particular in [3] it is proved
that if y, is a simple eigenvalue for the Laplace operator, then in the notations of
(1) there exist exactly two continuous functions A,(®)<A4,(x) defined for
o] <min ((x+ y — 4 )/2, (4 — px—1)/2), such that the equation (1) has non-trivial
solutions for the pairs (a, 4, (), (a, 4,()), i.e. these pairs belong to the resonance
set of (1). Moreover, lin}) ).,(a)=p, i=1, 2) holds.

In the present gaper, dropping the assumption that g, is simple, we obtain
a similar result in the sense that there exist at least two continuous functions
Ay(@)=<A,(x) defined for the same values of «, such that the pairs (a, 4, (x)) and
(2, A,()) belong to the resonance set of (1).

The approach we use is suggested by the one used in [4] and [5] for the study
of the bifurcations from eig.envalu&s of smooth potential operators.
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In the sequal we use the following notations. For a bounded region Q < R",
H}(Q) is the standard Sobolev space with scalar product j' Vu.Vvdx and the
corresponding norm. The pairing between H(Q) and its dua‘] H~1(Q) is denoted
by ¢, ->. Also (-, *) and |- || are the usual scalar product and norm in L*(Q).

Let

3) : O<p,<p,<...

be the eigenvalues of the Laplace operator in Q listed in growing order (i.e. the
corresponding eigenspace is not necessarily of dimension one).
Our main result is the following theorem:

Theorem. Let u, (k=2) be an eigenvalue for the Laplace operator in a bounded
region Q < R*. Then for |a| <min ﬂ”"* 1= )2, (U — Mx—1)/2} there exist at least
two continuous functions A~ (a) S A (a) with A* (0)=p, such that the equation (1) has
non-trivial solutions for the pairs (a, A~ (a)) and (e, l*(a)). Moreover, if (g |uludx #0
on Ker(A+y,), then A~ (x)<A*(a) for a« in a neighbourhood of 0, a # 0.

Remark. Since u, is simple and the corresponding eigenfunctions are of
constant sign this case does not present any difficulty. .

Proof. Let W=Ker(A+y,) and let
D(A)={ue H}(Q): Aue L}(Q)}.

As it is well known, under some regularity conditions on dQ we have
D(A)=H?(Q) n H} (Q). Let us note also that any solution ue H} (Q) of (1) in fact is
in D(A) and thus without loss of generality we can consider tfxe equation (1) for
ue D(A) only. Furthermore let

V={ueL?*Q):kl W in L?>Q)}
with the norm induced by L?(Q).

For any A€ R we can consider A + 4 as an unbounded operator in L*(Q). It is
easy to see that

A+A:VADA) - V.

Moreoyver, for A€ (i1 , 4x+1) this operator is invertible on ¥ and the norm of its
inverse (A+4)"! as operator from V into V is ¢

) IA+a)~ ! |=max {(A—px-1)"", (me+1—D)7 '}

Let P and Q be the orthogonal projections of L?(Q) on W and V respectively so
that every ue L?(Q) is decomposed as u=v+w with w=Pu, v=Qu. Now it is clear
that (1) is equivalent to the following system of equations

) Av+Av+aQ|v+w|=0,

6) A—u)w+aP|v+w|=0.
Let

) m=min {#x+1— M, B—HBe-1}

® Aelm—m/2, p+m/2],

(&) |oe] <my/2. <
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Under these assumptions (5) has unique solution for every we W. Indeed, (5) is
equivalent to

(10) v=—a(A+2)" ' Qlv+w.

From (4) and (7)9) it follows that the right-hand side is a Lipschitz continuous
function on V with respect to the L?(Q)) norm with a constant

(11) a=lel lA+)~ <L

Now the existence and the uniqueness of the solution follow from the contracting
mapping principle. Let us denote this solution, which depends on « and 4 also by

(12) v=0p(Ww, a, A).
To solve the equation (1) now it remains to find values of « and A (related between
them) for which there exist non-zero solutions of the equation

(13) A—pm)v+aPlw+o(w, a, 4)=0

arising now from (6). (Evidently w=0 implies ¢ (0, a, 4)=0 for all « and 4, hence
w=0 is solution for all a, 1. .

The part of the proof that follows is very similar to the argument in [1],
Prop.2.1, so we only sketch it here. Let us consider the functional

(14 L. 3= 3 fo {1V —aulu— a7} dx

defined for ue H§ (Q). As it is well known this functional is differentiable in H} (Q),
its derivative being

(15) DI, ;(¥)= —Au—a|u|— Au.
Iv:,is egsy to see that the partial derivatives of I, ; with respect to the subspaces

an
VAHLQ)={veH}(Q):v LW in L? (Q)}

denoted by Dy I, ; and D, I, , respectively exist and are equal to

(16) Dy 1, ,(u)= —Av—aQ |u|—Av
and

17 Dy I, 3 ()= —Aw—aP |u|—Aw=(u,— )w—aP |u|

all derivatives being elements of H™!(Q).

Now (1) and (15) show that we are looking for the non-trivial critical points
of I, ,, this critical points belonging in fact to D(A). It is not difficult to see now,
even though the proof is tedious, that (5) and (16) imply (following for instance the
argument in [1], Prop.2.1 with s=0, a=(x+1)/2, b=(x—4)/2 in the notations
adopted there) that the solutions of (5) obtained above are in fact saddle points for
I,, , considered on the subspace V for w fixed. This means that I, , for fixed w is
convex-concave on certain subspaces of V (cf.[1], [6], Lemma 2.2). Hence we can
apply Lemma 23 in [6] according to which the functional on W

(18) Jao.aW)=I, s (w+o(w, a, 1)
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is differentiable even though the function ¢(w, «, 1) defined in (12) is only
Lipschitz continuous. Moreover, in the above notations the equality

(19) DJo, :(W)=Dy I, a(w+o (W, a, 2)

holds. Now (13), (17) and (19) imply that it is sufficient to find the non-trivial
critical points of the functional (18) in order to solve the problem, i.e. if we find
a w, # 0 such that DJ, ,(w,)=0 then u,=w,+ ¢ (w,, @, 4) is a non-zero solution
of (1) (cf. again [1], Prop.2.1).

In the sequal instead of the differential DJ, , we shall make use of the
gradient V J, ;e W which is defined in the usual manner when W is considered as
g Hilbert space with a scalar product induced from L?(Q). It is easy to see that we

ave

(20) VI :W=(@—Aw—aPlw+ow, a, )|

too in this case since the right-hand side in (20) belongs to L?(Q).

Let us suppose now that dim W>1. Then the set S={weW:|w|| =1} is
a sphere and as 1t is well known if w, with ||w, || =1 is a critical point of J, ; on S,
then

@n VJa, a(wo)=1w,

for some real number z (the Lagrange multiplyer). In the case dim W=1 we cannot
apply the same argument, but now S reduces to two points and the eg:;i‘valent of
(21) olbviously holds for both. We shall turn our attention to the one dimensional
case later.

We proceed as follows. For every pair «, 4 the functional J, , has at least two
critical Tgoints on S (minimum and maximum) and we have the analogue of (21) for
both. Then we look for values of « and 4 such that the corresponding number 7 be
zero. First we consider the maximum. In more detail let w(a, 1) be a point in
which the maximum of J, ; on § is attained, i.e. we have

Jaa(W(a, A)2Jq,2(w) V [w]|=1.
According to (21), we have
Vigaw(a, ))=1(a, Yw(x, A).

The definition of 7 («, 1) seems ambiguous, but it is a well defined function of
« and 4 even though the point w(a, 1) may not be uniquely determined. Indeed, let
us note that the functional J, , is homogeneouos of second order and hence its
gradient VJ, , is homogeneous of first order. For the proof cf. for instance [1],
Lemma 3.2. Since ||w(a, A)|=1 this implies

(22) t(a’ l)=(VJ..‘(W(¢, '1))1 w(az, A))=2-’..1(W(G, l))=2max.l,,4(w)

and the last term is a well defined function of @ and A. Let us note also that
because of the homogeneity there is no loss of generality considering critical
values on S only.

Before Froceeding further on we need study in more detail the continuity
properties of the function @ (w, @, 4). We claim that ¢ (w, a, 4) is Lipschitz function
gf :‘ngr zfe its arguments when « varies in a compact subset of (—m/2, m/2) and (8)

O] t

-
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(23 : lel=m/2—e

for some £>0. Then as is easily seen from (11) we have g<c(g)<1, where the
constant c(g) does not on a. The function ¢(w, a, ) is a tz function
of w with a constant q /(1 —q)= C(s) for some other C(e) i tofaandl,
i.e. for all @ and A satisfying (23) and (8) respectively we have

249 lo(ws, a, )—@(w,, a, YIS Cle) lw, —w, .

In the ualwedenotebyC(e)vanousoonstantso!‘thutype.Letland satisfy
3). Pumg for brevity v,=¢(w, a, i) and v,=@(w, a, ) we have (cf.(lO))

=—adA+)7' QW+, 0,=—a(A+p) ' Qlw+u,|
whence
(25 Fo—t=a{(A+)7' —(A+u)" '} Qlw+v,|
+a(A+p)"" Qflw+0,|—Iw+o,[}.
Now (25) and the so-called resolvent formula
A+) ' —A+p) ' =(—-NA+ )" A+p)!
imply ’ .
v,—0=a(u—NA+)"YA+u)" Qlw+u,]
+a(A+m)7' Q{lw+v,|—Iw+u,l}.
Now (11) implies

m
lo.—osl Slu— g7 I1QIw-+o, 11 +q v, —o,1

whence
Iou— 0l SCle) 1w+, | lu— 44
From ¢ (0, @, )=0 and (24) it follows that lw+v,|| <C(e) llwll whence
(26) low, @, )—ow, a, pi<Ce)lIwl lp—Al.
In a similar way is obtained also
low, &, )—o(w, B, HI=C) Iwl lz—Bl

foranaamipmm(zs and A satisfying ().
Thus we have 8 that the function ¢ is continuoys function into ¥V with
respect to the L2(Q2) norm in V. Since (5) can be rewritten as

—Ap(w, a, )=Aip(w, a, D)+aQ|w+o@(w, a, )

and the right-hand side is continuous function in L?(Q), we can use the fact that
the operator —A is invertible on H~!(Q) its inverse (— ﬁ being continuous
from H'(Q) into H}(Q) and hence from L?(Q) into H ) and assert that the
function ¢ is continuous with respect to the norm of H} (ﬁ) t similar
to the above shows that for a sati (23) and 4 as in: ),theﬁmctnoncpu
a Lipschitz function of A into H}(Q), i.e. inequality of the form
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Q7D falV(eWw, a, H—o W, a, p)>dx=sCle)lA—puf Iw)?

holds.
Let us denote

(28) F(a, 4, w=JoaW=L (w+o W, , 4).

Next we prove that the function F has partial derivative with respect to 4. To this
end let f and A+x satisfy (8). If )

Sp=0p(w, o, A+x)—@(w, a, 1)
elementary computations show that we have the representation

29 F(@ i+x% wW—F(@, 4 w=— fs(ww(w, a, ) dx

+ jV(w+(p(w, a, A)Vépdx+ = j|va<p|2dx
—aIIW+¢(w a, l)l&pdx+0(II6¢l)

—Afw+emw, @ D)dodx_Gerdx
Q 4]

-x‘j,(w+¢(w, a, ).))6¢dx—§!’(6¢)2dx
== [{Aw+oWw, o, D+alw+ow, o Y+AUw+oMW, @ )} spdx
e}

(l +x)

. 1
—3Jw+ow, & A dx+5[IVoel* dx— o= 150l +o(ll).
(o} e}

The first integral in fact is
- [(Aw+aP|w+o@(w, a, )+iw)dpdx
Q

- I(Atp(w, a, )+aQw+oWw, a, )+ip(w, a, 1)dpdx=0

since @ (w, a, ) by definition satisfies the equation (5) and ¢ is orthogonal to W.
From (26) and (27) it follows that the last terms in (29) are o(x). Thus the function
F(x, A, w) is differentiable with respect to 4 and

(30) F:l(ar A, w)=— ij(w+¢(w: a, )'))2 dx.
' o
Let us now return to the function z(a, 1) defined by (22). We claim that it is

continuous. Under the notations of (22) and (28) we have
(2, A)=2max F (o, )., w).

On the compact set {[lwll=1}x[u,—m/2, p+m/2]x[—m/2+¢, M/2 e] the
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function F is uniformely continuous, i.e. in particular for every n>0 there exists
6>0 such that for every |A'—A1"|<é, |’ —a”"|<d we have

31 |F(e, A, wy—F(a", 2", w)l<n

for all |lw|| =1. Let a,, 4, be fixed and let |x —a,| <6, |]A— 45| < 8. According to the
definition there exists w, such that

(32) (29, Ao)=2F (a9, 49, Wo)-
Then
33) (@, )=2max F(a, 4, w)22F (a, 4, w,)

wl=1
>2F(a0a AO: Wo)"z'l:T(aoa lo)"z’l-
On the other hand, (31) implies F(a, 4, w)<F (ay, 49, W)+ for all |w]=1 and
since F(ag, A9, WS F(ag, 49, W), from (32) we obtain
F@ & W< 37(0, o)+

for all ||w||=1 whence also
34) t(a, )=2max F(a, 4, w)St(zg, 4o)+2n.

Now the assertion follows from (33) and (34).
Next we prove that t(e, 1) is strictly decreasing function of A. Indeed, (30)
with ||w||=1 implies for fixed w and « that

Fo(a, 4, w=—1—|lo(w, a, A)|*><O0,
i.e. for fixed « and w, 4'<A” implies
F(a, 2, w)>F(a, A", w).
Now we have
t(a, A')=2F(a, 4, W), t(a, A")=2F(a, A", W")
whence
t(a, A")=2F(a, A", w")<2F (a, A, w")S2F(a, A, W)=1(a, 4).

Now we can return to the main problem, i.e. the study of the set of points
(2, A) such that t(x, 4)=0. First we show that

(35) T(a, p+m/2) #0, t(a, u,—m/2) # 0.

Let Q;={(a, A):p;+la) <Ad<pysy—lal}, i=1, 2,..., Qo={(a, A):A<pu,—|af}. It is
well known and can be easily seen that the equation Au+ « |u] + Au =0 has zero as
an unique solution for (a, )€Q,;, i=0, 1, 2,... Indeed, the right-hand side of

(36) u=—o(A+1)" "yl
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is a Lipschitz function with a constant g<1 for such (a, 1), and so the equation
(36) has unique solution and u=0 is a solution.

Since for every (aq, 4¢) such that t(x,, 4,)=0 the function u=w+¢@ (W, a, 4)
where w is such that t(ay, 4o)=2max F(x,, 45, W) is a solution of (36) which is
different from zero since ||w| =1, we have that this (ag, 45)¢ QU Qx—,. Since
obviously (a, u,—m/2)eQi_,; (a, p,+m/2)eQ, for |aj<m/2, this proves (35).

Now (35) implies that the functions t(a, u,+m/2) and t(x, p,—m/2) have
constant sign. To determine this sign we calculate it for a=0. Now (10) and (12)
imply ¢ (w, 0, 1) = 0 and we can calculate from (18) and (28) the value of F (0, 1, w)
for ||w||=1 and obtain

FO, & W)= J (V% —iw?)dx= 24— 4,

N | =

J
Q
whence
(0, u,+m/2)=2F (0, u,+m/2, w)y=—m/2
(0, uy,—m/2)=2F (0, uy,—m/2, w)y=m/2.

Thus the functions in (35) are of different sign. All this allows to conclude that for
every |a| <m/2 —¢ there exists an unique A(a) such that t(a, 4(a))=0. It remains to
prove that the function A(x) thus obtained is continuous. To this end let a, — a,.
Since the sequence A(a,) is bounded, we can choose a subsequence A.(a,k) — 1. For
this subsequence we have
(2, )= lim t(a,, , Aa,,))=0.
k— o

Since A(a,) is the unique solution of 7(a,, 4)=0, we must have 1=1A(a,), i.e. the
function A(x) is continuous. At last the fact that (x, A(a))¢ Q- v Q, implies

Mo < o) < pty + o]

whence A(0)=pu,.

Since the argument holds for every £>0, the result is in fact valid for
|| <m/2.

A similar argument holds if instead of max F («, 4, w) we consider min F (a, 4,
w). Let t* (2, )=1(2, )=2max F(x, 4, w) and t~ (a, )=2min F(a, 4, w). Let

wl=1

A* (@)= A(x) and let A~ () be its analogue determined by 7~ (a, 1)=0. Obviously
17 (a, A)<1*(a, A) whence O=1" (o, A~ (@))<7* (o, A~ (a)). Now t* (o, 1~ ())=0,
% (a, A* (¢))=0 and the fact that the function t* («, 1) is strictly decreasing imply
At (@)=4 ().

At last, let for some a, 1~ (x)=A4" (a). According to the definitions this means
that for this @ and Aa)=A4" (®)=4" («) we have

37 F(a, M), w)=0

for all |jw|| =1. On the other hand, from (20), the homogeneity of J, , and (28) it
follows that
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(38) 2F(x, 4, w)=(VJe W), W=, —D)—aflw+o(w, a, ) wdx.
Q

Now (37) and (38) imply

A=) (ot pw, o, Dwdx
] Y

for « # 0 and all |w|| =1, i.e. [o|lw+@(w, a, 1)) wdx has constant sign for all w.
Since the function ¢ (w, a, 1) is continuous and ¢ (w, 0, 1) = 0, clearly this cannot
be the case if [oIw/wdx# 0 and a # 0 is small enough.

This completes the proof of the theorem.

Remark. Throughout the proof of the theorem we have not used in an
essential way the assumption dim W> 1. (See the remark following (21).) If on the
contrary dim W= 1, everything is much easier. Indeed, W={4e,, 1€ R} in this case
and now we have that t* («, ) is equal either to F(e,, a, 4) or to F(—e,, a, 4).
This fact only simplifies much of the argument as regards the study of the function
t* (a, 4). Moreover, since in this case the solutions of (1) thus obtained are of the
form u(ex, 1) =eq+@(ey, @, ) or —ey+@(—e,y, a, A) we can affirm that to the
continuous functions 4* (x) and A(a) (Which provide the only possible elements of
the resonance set in this case) correspond continuous curves u(a, A% (a)).
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