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Splines and Numerical Solutions with an Accuracy O(A3 )
for a Hyperbolic Differential-Integral Equation

Hoang Van Lai
Presented by P. Kenderov
The numerical solutions with an accuracy O(h®) for a simple case of von Foerster-Gurtin-

MacCamy model are obtained by splines. The existence, uniqueness and convergence theorems are
proved.

1. Introduction

In this paper we are interested in finding numerical solutions for the
following problem (see [1])

du(x, t) . ou(x, t) _

(1) = 7 —d(x, t, Pt)u(x, t),
#)] u(x, 0)=¢(x), 0=sx=<A4,

3 u(0, )=y (1), 0st=<B,

4) P(t)= _( u(x, t)dx.

Here u(x, t) is an unknown function; d, ¢, ¥, are given functions. The problem
(1)—(4) is a simple case of von Foerster-Gurtin-McCamy model, describing the
age structure in time of a population (see, for example [2], [3]). In that model
instead of (3) one has an equation

u(0, )= (3 b(x, t, P(O)u(x, t)dx.

The numerical solutions with an accuracy O(h) for these models were considered
in [4].

For numerical solutions of (1)-(4) with an accuracy O(h*) we shall need the
following assumptions:

1) The problem (1)-(4) has a smooth solution u(x, t) and u(A4, t)=0 for all
t=0. This condition is a well-known condition for the age structure of a
population (see, for example [3]). We note that the solution u(x, t) satisfies the
inequality (see [1])
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(5) 0=<u(x, )< C,=max( max ¢(x), max y ().
0sxs4 0stsSB
2) The function d(x, t, P) has a form (see [5])

d(x, t, P)=d,(x)+d,(t)+d,(P),

where d,(x)=0, d,(-) are differentiable and d) (x) is a continuous function for
0=<x<A. If di(x) > c0o when x — 4, then there exists a number 4,, 0<A4, <A
such that

C
(6) d,(x)< (A——zx—)" 0<C,<w, 0<a<2,
(7) Idl (x)lgc3d%(x): A1§X§A, 0<C3<1’

d,(t) is a continuous function for 0<t<B.
d3(P) is differentiable and d3(P) is a continuous function on [0, 4,], where

® a2 0c,A

3)d(x, t, P)=C,>0.

The paper consists of 5 parts. After the introduction in the 2nd part the
nonlinear system of equations for numerical solutions with the accuracy O(h3) will
be obtained. In the 3rd, 4th, and 5th parts the existence, uniqueness, and
convergence theorems will be proved.

2. Numerical solutions of the problem (1)-(4)

For construction of numerical solutions we take a positive integer number N.
Let h=A/N and

x;=X;j—1+h, i=1, 2,..,, N, x,=0.
We shall determine numerical solutions U;, ; on every line t=t¢,.
t;=tj-1+h, j=1, 2,..., t,=0,

at the points (x;, t;).
On the line t=0, from (2) we obtain

Ui.0=(p(xi)a i=01 1)---, N.

Now we suppose that, on the line ¢;_,, j=1 the values U,=U, j—1 — the

approximations for u(x;, t;-i)—are given. Let S(x) be a cubic spline,

interoplating U, and let P= 3§ S(x)dx be an approximation for P(t j—1)- Then we

shall determine U,=U,, ; — the approximations for u(x;, t;) on the line t;.
From (3) and assumption 1) we have .

0,o=v(,), O,=0.

Now denote
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) dr) =u(x+7, t+7), d@)=d(x+7, t+1, P(t+1)).
Then (see [2]), formula (2.5))
du _
(10) =+ d()a (1)=0,
ie.
(11) i (h)—i (0)=— (4 d(v)i (z)dr.

Using now quadratic formulas for the integral in (11) we can get numerical
solutions with different accuracies. For example, in the case

¢d () ()dr =~ — g[J (0)iz (0)+d(h)a ()}

we get numerical solutions with the accuracy O(h?). The existence, uniqueness and
convergence of these solutions ‘were studied in [8].

In this paper we shall consider the numerical solutions with an accuracy
O(h®). For this purpose, let f(t)=d(z)i () and let G(r) be a quadratic Hermite
spline (see, for example [7], pp.304) for f(z) on [0, k], i.e. G(r)is a quadratic
polynomial and

G(0)=/(0), g(h)=f(h),
G'(0)=1"(0).
Replacing d(z)i (7) in (11) by G(r) one can get that
fsda (r)dr= [6f(x)dr = [§ G(r)dt

h h?
=3[/ +/ B+ </ O

In the formula (12) we have to calculate f* (t). We note that u(x, t) is the solution of
(1). Then from (9) we obtain equalities

FO=LO+&0+d5O FPO
—d? (., (x+7, t+T, PE+D)u(x+1, t+7),
SP(t)---i du(x t)dx—j"‘—q- (x t)dx——f“[iu(x t)
ar W= gglouts DEX=Jog Ul HEX="Jolg 4

3) +d(x, t, PO)u(x, )]dx=y ()—[3d(x, t, P@t)u(x, t)dx.
So U,, i=1, 2,..., N—1, can be determined by the following equations:

2h h? h
(149 0,=U;_,[1— ':;—d(xt-x»tj—np)— ?Fi-l.j—l(P’ P)]— Ed(xn tpp)o i»
where
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Fios 1 (P, P)=[dO)+ds )+ PdsO—d (o X1, tj-15 P)
P = max (0, IgS(x)dx), P= .p(t,_l)—j'gd(x, tji-1, P)S(x)dx,

(15) P = max (0, [4S(x) dx),
S(x) — a cubic spline (see, for example [6]), interpolating U, i.e.
(16) Sx,)=0,, i=0, 1,..., N.

We can use the following boundary conditions for S(x)
At the point x,, from assumption 1) we have

7 § (x)=0. |
At the point x,, we require continuity (see [6]) of $” (x) at the point x,, i.e.
(18) S (x, —0)=8"(x, +0). '

For given U,, i=0, 1,..., N, there exists unique S(s). So U, are implicitly
determined by the system of equations (14)-(18). We note that on [xy_y, A] S(x) is
a polynomial and S(4)=S'(4)=0. From (6) it follows that the integral in P’ takes
a finite value. '

3. Existence of the numerical solutions

For the proof of the existence of U; we shall suppose that the given U,,
i=0, 1,..., N, satisfy the inequalities

(19) 0=U;=C,,
- where C, is determined in (5). We shall need the following lemmas:
Lemma 1. Let S(x) be a cubic spline satisfying (16), (17), (18). Then

104
(20) 1P| =|[48(x) dx|<C; I8(x ,)Il, Cs =73
where
IU;l= max |Ul.
i=0,1,-++ N

Proof. On [x;_;, x;] the spline S(x) has a representation (see [6], p.98)
(o= xPe=xi-1)  (x=Xi=1)*(x;—%)
h2 -m h?
(%= X)*[20x—x;-1)+h] (e —x;-1)*[2(x;—x) + h]
H? h3 ’

where m;, i=0, 1,..., N, satisfy a system of equations

Sx)=m;_,

(21)+8(x;-1)

+ 8(x;)
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Sx ) —28(x ;) + S(x )
h bl

my=m,—2
2
@) 2myrmy=3, = 5 (S0c) =S+ 5 S6x2)—S6x )

3 e
(23) mi_y+4m;+mi =0, E;(g(xi-f-l)—'g(xl—l» i=2,3,..., N—1,

mN=0.
We note that (22)-(23) is a diagonal dominant system. Then
6
Im|<  max 16| 3180l
i=1,2,--- N—-1
and therefore

14
Imo < 2 1SG<:)l,
ie.
14
(24) llm; || = - 18Gx ).
From (21) and (24) it follows that
N
IPI=14 809 dxl< Z i, 189 dx
=1

"mi | X

ZI LI —x)2(x — X;— 1) + (X — X;- 1 )2(x; — x)] dx
i=1

i 5 5 (o PR+
i=

+(x—x;—1)?[2(x;— x) + h]} dx.
Because of

1
% O X (e =) dx = 5, (6 —xHx—xi-1) dx= T h*

we obtain
104
Pl - Ilmillh+AII5’(xi)II——lI§( x )l

Lemma 1 is proved.

Lemma?2. Let U,, i=1, 2,..., N—1, be a solution of (14) with U, satisfying
(19). Then for small h
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25) 0=0,2c,,
where C, is determined in (5)
Proof. Denote

- {gnax d,(x), if d,(x)is bounded on [0, A],
= xS A
6 = 1" max d,(x), if d(x) is not bounded on [0, 4]
OSxSAl
C, = max d,(t), Cg = max d,(P),
0stsB 0sSPsA4,
_ { max |dy(x)|, if d}(x) is bounded on [0, 4],
® = 153 14y (%)), if di(x) is not bounded on [0, A]
0SxsA,
Ci0 = max |d5(¢)l,
0st<B
(26) C,; = max |d5(P), C,, = max |d3(P)l,
0sSP=sA4, 0SPsA,
27) Ci13=Ce+C+Cq, C1a=Cy+C10+C11 C;(1+C5Cy3)
Then d(x, t, P)<Cy3, |dj (¥)I+1dz(@)|+|P|ld3(P)|=C1a-
Firstly we shall prove that U,=0. Let consider the case when dj(x) is
bounded on [0, 4]. From (14) we get the following equality

2h h?
1—?d(x,_,, tj—1, P)— ?Fi—l,j—-ly (P, P)
8 U=

h Ui—19
1+ §d(x‘, tj’ ﬂ

i=1, 2,..., N—1,
We note that

L= §y+%y2 é%-

Then for 0<h<h, with
(29) O<hy £ =
Cl4

from Lemmal and (28) we obtain that
2h h?
1_?d(xi—1: tj-1, P)——6"F1—1.1-1(P, P)

2h h? . h?
Zl—-j-d(x:-x, tj-1, P)+?d2(xl-—-1 > Li-1s P)—?Cu
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1 h?
>§' - FC1420

Consider now the case when dj(x) is not Bounded on [0, A]. In this case for
x;—1 <A, we can use (28) and (30) to prove that U,=0. Let x;-,>A,. From
assumption 2) one has

2h h?
1__3_d(xi—h ti—1» P)_?Fi—l.j—l(P’ P)

2h h? 3
gl_?d(xi—la ti—1, P)+?[(1"‘C3)d (Xi—1 tji—1, P)

—ld> (tj 1)+ P ds5(P)l]
h?
(31)21—“‘d(xi 15 tj 1s P)+ (1—C3)d2(x, 1> Lji-1, P)——C14-
Denote

2 1-C
go) =1-3y+——— —3y2

1
If C3<§ then g(y)=g(y,)>0, where yo=l—2—c—. Let .
— L3

69(0)
Cia

32) O<h = -7
For O<h=h, we have

2h h? h?
1_'§_d(xi—1a ti—1, P)_?Fi—l.j—l(})’ P’)ég(yo)—?CuzO.

Consider the case %g Cy<l1.
Let
0<y1 <———l—_-T

and be fixed. Then

9g»)=29(y,)>0, O0<y=y,.
Let

(33) hy = min(é’—;, \/9%(:'7*)).

For 0<h=<h, we have
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2h h?
_Td(xi—la ti-1, )——‘Fu 1.j-1 (P, P)Zg(hd(x;-y, tj—y, P)

2
~Ecuzo.

So we obtain that U;=0.
Now we are going to prove that U,<U,_,. Let

6C
34 O<h,£—— 12—,
34) 3=C3 +Cua
where C, is given in the assumption 3). Then for O<h=h, one has

h? 2h
l——d(x, 1> Lji—1> P)__Fi 1.j-1(P, P)Sl—?C.t

h
+F(C§3+C14)§1+§C4§1+§d(xi, t;, P).

Denote
(35) hy = min(ho, h,, hy, hj),

hg, hy, h,, hy are determined in (29), (32), (33), (34) respectively. Then for 0<h$ h,
the inequalities 0= U,<U;_, hold. Lemma2 is proved.

Corollary 1. For 0<h=h, if U, are solutions of (14)(18), then
(36) 0<P< -L;)CIAgAz,

i.e. the -value d, (P) is correctly determined.
Lemma3. Let F=max(0, [§f(x)dx), P=max (0, (41 (x)dx).
Then
IF—FI=| f8 f () —F ()] dx].
Proof. If [4f(x)dx>0, [47(x)dx>0, then
|F—Fl=] f8 f(x)—F (x)] dx].
If {3f(x)dx=0, _[‘Jf(x) dx <0, then
=|F—F|=| [ f(x)—F (x)) dx|.
Now consider the case [§f(x)dx>0, [§7(x)dx=<0. Then
IF—Fl= [§f(x)dx = [$1f(x)—F (x)] dx.
At last, consider the case [§f(x)dx=<0, [4f(x)dx>0. Then
IF—Fl= 37 ()dx= — [ 1f(x)—F (%)) dx.

Lemma 3 is proved.
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Now we are going to show that the solutions 0,;,i=1,2,..., N—1 exist. For
this purpose, we consider the following sequences of k, k=1, 2,...
2h h?
Uiv=Ui_, [1_"3"d(xi—1’ ti-1s P)——6—Fi—1.j—1(P, P)]

h
(37 _Ed(x" t, Py )0,

i=1,2,..., N—1
Uo.k=¢(tj)a Oy.=0, U, 0=U,,
(38) P, ,=max(0, (§5,-,(x)dx), P,=P,

S._1(x) is a cubic spline, interpolating U; 4_y, i=0, 1,..., N and Sx-1(x)=0,
-1 (6, —0)=8%1 (x, +0).
For 0<h=<h, from lemma2 we obtain

0<0,,<C, for all k=1, 2,...

Consequently, using Corollary 1 we conclude that P,_,e[04,].
Denote

Vl'.k=0i.k_01.k-l’ k=2’ 39'--
Then VO,szN.k=0~

Vi.k=—g‘[d(x.-, t, Pk—l)Ui.k"'d(xi’ L, Pk—z)Ui.k—l]
h
=—§[d(x,-, L, Pk—l)Ui.k—d(xu s Pk—l)oi,k—l

+d(x;, t;, Py )0, k-1 —d(x;, L, Py_3)U0, 4]
(39)

h h
—Ed(xn Lj, Pk-l)Vi,k+§Ut.k—1d’a(é)(Pk-l—Pk—z),

i=1,2,..., N—1,

where & is a value between P,_, and P,_,. Now we have to estimate
|Py-y—P,_,|. From lemma3 we obtain

|Pk—l_Pk—2|§|_‘-g [gk—l(x)_gk-z(x)]de

It is clear that Sy, (x)— S8 ;-2 (x) is a cubic spline, interpolating U, ,—; —U0; x-»
= vi, x—1and S _ 1(xy)— Slk—z(xN)=0a Si-1 (x,—0)— g:—Z(xl _0)=S7"- 1(x, +0)
—8%_5(x,+0). Then from lemmal we get that

(40) ka—l—Pk—zléljglgk—l(x)_gk—z(x)]dxlécs Vi k-1ll.-
From (39) and (40) we obtain an inequality
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h
@ 1Vi.al £3C1 Cs Cis Vel

where C,, Cs; and C,, are determined in (5), (20) and (26) respectively.
Now we take
3
42) O<hs<———7—.
( s Cl CS Cl 1
Then for 0<h=hs we have

- h
"Vi.klléql ”Vl'.k-lllé séis éq’i ! ”Vi.l”’ q, E§C1 C5C11<1.

So for every i, i=1,2,..., N—1 the sequence U i, xk converges to some U ;- Denote
U ,=v(t;), U y=0. Let §(x) be a cubic spline, interpolating U ,, i=0, 1,..., N and
S(x)=0, §" (x,—0)=8" (x, +0).Then (3 S, (x)dx converges to {8 S(x) dx. From
(40) it follows that, if {3 S(x) dx <0, then P, converges to 0. If {4 S(x) dx =0, then
, converges to [§ S(x) dx. So P, converges to max (0, |4 S(x) dx), i.e. U, and
P=max (0, [4S(x)dx) are solutions of (14)-(18).
We resume this result in the following theorem:

Theorem 1. For 0<h=min (hy, hs), h, and hs are determined in (35) and 42)
respectively, the solutions U.,i=1,2,..., N—1 of the system (14)-(18) exist. These
solutions can be obtained by sequences (37), (38).

4. Uniqueness of the numerical solutions

Theorem 2. For 0<h=min (h,, hs) the solutions U,., i=1,2,..., N—1 of the
system (14)-(18) are unique.

Proof. Let U, also be solutions of (14)(18), i.e.

2h h?
U.'=Ui—1[1_?d(xi—la li-1s P)—FF.'—l,j_l(P, P)]

(43) _gd(xi’ L, ﬁ) Ui»

To=y,), O y=0.
Let
P=max (0, [4S(x) dx),
S(x) is a cubic spline, interpolating U,, i=0, 1,..., N and §(x,)=0
8 (x, —0)=8" (x, +0). Here Ul? may not satisfy (25). (=0,
Denote

vi=0,-0,.
Then from (14) and (43) we obtain the equalities
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h
Vi= -3l ¢, PO ,—d(x,, t;, P)U ;]

= —g[d(x,, t;, PO ,—d(x;, t;, PO,
+d(x;, t;, PO ,—d(x,, t;, P)O ;]
=§d(x,, t, f’)V,—-gdfs(t)U,(P—P),

where 7 is a value between P and P.
According to Lemmas1 and 3 we obtain

|P—B|<| [41S0)—8(x)] dx|<Cs 10 =T, |=Cs |V,
Then

h
IVl £3C1 Cs Ca IVl

For 0<h<h; it follows that U,=0,. Theorem?2 is proved.

5. Convergence of the numerical solutions

In this part we shall study the convergence of U; ; to u(x;, t;). We note that if
G(z) is a quadratic Hermite spline for f(t)=d(z)i (z), then for smooth f(z) one has
(see, for example, [7], p.304)

If@)—G@I=Cysh,
where C,s is independent of h. From (11) we obtain that

2h
u(x;, t;)=u(x;-1, tj—l)__3—d(xi—l.a tj—1, P(tj—1)u(Xi—1, tj—1)

h? d
_'_6"Fi—l.j—l (P(t;-1), a;P(tj—l)
(44) _d(xia tja P(tj))“(xb'tj)'i-ri.j’
with
45) I, j| =Css h*,

where C,¢ is independent of h.
Now subtracting (14) from (44) we get
u(x;, t;)—U; j=[uXi-1, tj-1)— Uiy, j-1]

2h
—':;‘[d(xi—n tj-1, P(tj-u(xi-1, tj-1)—d(xi-1, tj-1, P)U;_,,j-1]
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h? d
— g [Fims =1 (PCti- 1)y G P - Cxim s, tj-1)
—Fi_y,j-1(P, P)U;—4, -]
—g[d(x,., t;, Ptu(x;, t;)—dx;, t;, PU, ]+
=[u(xi-1, tj—1)—Ui-y, j-1]

2h h?
*[I—Td(x,_,, ti-1, P]_FFi—l.j—l(Pa P))

2h
—u(xi-1, tj—l){—j‘[d(xi-g, tj-1, P(t;-1)—d(x;-1, tj—y, P)]
i F P g P F '
"—6‘[ i—1,j-1 (P(ti-1), ar (tj-1)—Fi-1,j-1(P, P')}}
h
"‘5[“("1’ t;)— Ui ;1d(x;, t;, P)

R, M 4 PEY—dGss 1, Pl

=[u(xi-1, tj-1)—Ui-1,j-1]
2

2 h
*[I_Thd(xi—la Lj-1, P]—?Fi—l.j—l(P, P
2h
—u(xi-1, tj—l){—:s—[dS(P(tj—l))_ds(P)]
h> F P d P 4
_?[ i-1,j—1 (P(ti- 1), at (tj-1))—Fi-q, ;-1 (P, P)]}
—g[u(x,-, t;)—U; ;ld(x;, t;, P)

h
(46) —quxes t)lds (P ) —ds P+, .
Now let s;(x) be a cubic spline, interpolating u(x;, t;) and sj(xy)=0,
s} (%, —0)=s}" (x, +0). If (3/0x)’u(x, t) is a continuous function, then -

d
47 max I(a)"[u(x, 4)=5;N=Cyah*7% k=0, 1, 2

0sxsA
where C,, is independent of h. Denote
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P;=max (0, [§s;(x)dx),
Pi=y (t;)—[3d(x, t;, P;)s;(x)dx.

From Lemma3 and (47) we obtain

(48) |P(¢;)— P;1=| 8 [u(x, t;)—s;(x)]dx| S AC,g h>.
We can now rewrite (46) in the following form
2h h?
I_Td(xi—ls ti—1, P)—FFi—l,j—l(P’Pl)

u(x,-, tj)—Ui.j= —_— h
l+§d(x,, t;, P)

*[u(xi—1, tj-1)—Ui-1, j-1]

1
49 - + (Ry+R;+R3+R4+Rs5+1, ),

h

where

2h
Ry =—u(xi-1, j-1) 5 [ds (Pt;-1)—d5(P-1))

2
Ry = —uxicts t-1) 2 1ds (P 1) =P}
Ry=—u(xi-1, tj-1)

h? d
*?[Fi—l.j—l(P(ti—l)’ a';P(tj—l))_Fi—l.j—l(Pa P,

h
Ry =—u(x;, tj)—3_[d3(P(tj))_d3 (Pl
h
Rs=—u(x;, tj)i[d3 (P;)—d, (P
From Lemmal, 3 and (48) we get the following inequalities

(50) IRy 1S5 C, Cuy ACss b,
1
(51) IR\IS3Cy Cay AC b,

2h '
(52) IRzlé?CI Ci1Csllu(x;, tj—1)—=Ui j-1ll,

291
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h
(33) IRs|=3Cy Ci1Csllulx;, t;)—Ui ll,
where C,, Cs, Cyy, C,g are given in (5), (20), (26) and (48) respectively.
Now we are going to estimate R;. For this purpose we have to estimate

d
|P(t;—1)— P, | P(tj 1)—P'|. From Lemmal, 3 and (48) we have

|P(tj-1)—PIS|P(tj—1)—Pj-1|+|Pj-y — P
(54) SAC s> +Cs llu(x;, tj-1)—=U;].
Lemma 4. The inequality

d 1
(55) |—P(tj—1)—P'|§C19hz+‘Czo flu(x;, t;-1)=U,ll,

holds. Here C,q, C,o are independent of h.

Proof. Using the representation (21) and the system (22), (23) one can prove
that

(56) (——)"[t, 1(x)— S(x)]I_h,,Czl lu(x;, tj-1)—U;ll, k=0, 1, 2

C,, is independent of h.
From assumption 2) we obtain the equalities

d
(57) &P(t,_l)—P'=R6+R.,,

— J8d, (u(x, t;-1)—S(x)]dx,
=—[d,(tj-1)+d; (P(tj—l)]jg [u(x, tj-1)—S(x)] dx.
From (47) and (56) we get that
(58) IR,1S(C7+Cg)AIC b+ Cay Nu(x;, £;-1)—U,|].

Consider now R,. In the case, when d'(x) is bounded on [0, 4], from (47) and (56)
we have

(39) IR6|=Cs A[C18h* + Cay llu(x;, t;—1)—U,|].

In the case, when d)(x) is not bounded on [0, A] we can rewrite R, in ‘the
following form

Re¢=Rg+Ry+ Ry,
— f81d, (Mu(x, t;-1)—S(x)]dx,
= fi’{“dl(X)[u(x, tj—1)—S(x)] dx,
Rio=—[2,_,di(0)u(x, t;—1)—S(x)]dx.
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Obviously
(60) |Rg| = Cg A[Cy5 B+ Cyy llu(x;, tj-1)— Ul
d
Using integration by part and the conditions that u (4, t;_;)—S(4)= a[u (A4,t;-4)
—S(A)]=0 for R,, we obtain that

Rio=f4 _ [z . d (r)dt —[u(x, £j-1)—S(9)dx

*N-1

=—f4 _ G 5 d (t)drdé( )z[u(x, j-1)—S(x)]dx.
Consequently, from (6), (48) and (56) we can get
C
(61) IR10|S Caz HCis bt =5 lulxi, t;-1)= Uil
C; = max [}

AySxsA
We estimate now R,. If a<1, where « is given in (6), we have

N_lj',N_ldl(r)dtdC.
. C, 3
(62) |R9I§AF[C18h +Coy llu(x;, tj—1)—=U;ll)

In the case 1<a<2 we have
IRg|< max |u(x, tj—1)—Sx)| =)0 5 dy (x)dx

Ay Sxs4 Ot
<G 1
_h, —2[Ci1ghB*+Cay llulx;, tj—1)—U; Nz (N=iy

-2, C '

(63) SC; Caa[Caah* ™ 4555 lulxis 1) = Uil

where x;_; <4, <x,,

1
C23 = zx 1()a

From (57)-(63) we obtain (55). Lemma4 is proved.

Lemma5. The following estimate

(64) IR3ISCaah*+Cos lu(x;, tj—)—U;l,
is true. In (64) C,,, C,s are independent of h.
Proof. We have
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R;=R;; +R,,,

h%* d , .
Ryy = —u(xi—y, tj—l)?[ap(tj—l)d(P(tj—l))—P 3(P)],

h2
Rlz-—_=u(xi_1, tj._l)zldz(x,‘_l, tj_l, P(tj—l)—dz(xi—la tj-—l: P)]’

For R,, from (54) and Lemma4 we get that ’

h? d
IR11|=£Cy {l aP(tj—1)['d'3(P(tj—1))—d3(P)]I

d
+1d3 (PN [, P(tj-1)— P}

hz
é“gcl {C26C12[ACy5 h*+Cs llu(x;, tji—1)—=Ull

1 .
(65) +C11[Cyo h2+;C20 lliu(x;, tj—1)—U;lll},
where
C,¢ = max IgP(t)l
2 0<t<B dt .

Now we rewrite R,, in the following form
2

h
Ri;=u(x;i-, tj-l)z'[d(xi—l’ ti—y, P(tj— ) +d(xi-1, tj—1, P)]
*[d(xi—y, tj—1, Pltj—()—d(xi-y, tj-1, P)]

h2

—g“(xi—l, tio)Rd(xi-ys Li-ys P(tj-1))+d;(P)—d;(P(tj-4))]
*[dy (P(tj-,))—d;(P)].

Consequently

h2
(66)  IRiz|=-[2C27+2C, CglCy1 [AC s h* + Cs llu(x;, tj-1)— Uil

C,; = max  (u(x, t)d(x, t, P(t)
0<x=Za, 05t<B
0 0
e max |=—u(x, t)+—u(x, t).
0sx<A, 05t<B ax

_____ ot

From (65) and (66) we get (64). Lemma5 is proved.
Now we can prove the convergence of U; ; to u(x;, t;).
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Theorem 3. The- numerical solutions U; j converge to the exact solution
u(x;,t;) of the problem (1)-(4) when h — 0 and the rate of this convergence is O(h®).

Proof. For every jdenote
gj=||u(x,., [j)—-U,‘,j".
We shall show that
g;<Cyg h?,

where C,; is independent of h. In fact, using Lemma 2, (45), (49)-(53) and (64) we
get that

1+Cyoh
s )= Ui | STg oy 140 =)= Ui jms I+ Cas b,

where

2 1
Cyo = §C1 CsCi1+Cys, C3o = §C1 CsCi1,s

C31 =(C,Cy1 C19 A+ C24+Ci6)/(1—hs Cso).
So we get the following estimate
£;=q,¢j-1+Cx h*, g, = (14+Cyoh)/(1—Cs0h).
If C,0=0 and C;3,=0, then
67) sJ§C31jh3.
Now consider the case C,9>0 or C30>0, i.e. g,>1. Then

8j§C31 h4+q2 C31 h4+ e +(q2)j_lC31 h4

Ci .
68 = —1](1 —C50 h)h.
(68) e (@Y 10— Csoh
For j=1, 2,..., [B/h], [f] is the integer part of f, from (67) and-(68) we get that

sjé C28 h3’

where C,g is inependent of h. Theorem 3 is proved.
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