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No question is ever settled until it is settled right
Rudyard Kipling

The present article is a part of a series of investigations of the authors dedicated to the solution
of Hilbert’s Sixth Problem concerning the axiomatical consolidation of the foundations of analytical
mechanics. It proposes an axiomatical definition of the notions of affine and rigid motions in complex
standard vector spaces together with some mathematical corollaries from this definition.

§0. Pro domo sua

The rigid body concept has been the object of some previous
investigations [1-3] of the authors of this paper. As a matter of fact, however, what
was actually studied in these articles were the motions of rigid bodies
rather than the rigid bodies themselves.

On the other hand, meanwhile it has been discovered [4] that there exist
particular Hermitean spaces H for which it is possible to define a fourth
operation (vector multiplication) by the aid of two specific algebraic axioms. More
precisely, it has been proved that a necessary and sufficient condition to this end is
the 3-dimensionality of H. Such Hermitean spaces supplied with vector
multiplication are called complex standard vector spaces and are
denoted by V. by contrast with the real standard vector spaces
traditionally denoted by V.

This definition works at considerably more general situations. Namely, H
may be replaced by an Hermitean space Hcr) over the complex extension C(F) of
any ordered field F, and it is proved that H¢, is necessarily 3-dimensional. The
corresponding standard vector space over C(F) is denoted by V.

Now it is very desirable to establish to what degree the geometric and
mechanical notions originally defined and developed in ¥ may be extended in V.
and even in V¢, .

As regards the analytic geometry, for instance, such a parallelism has
been established in the articles [5, 6], the first of which proposes an axiomatical
consolidation of the real 3-dimensional linear analytic geometry, while the second
concerns the complex case.
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Another example of real and complex standard vectors analogies is proposed
by the algebraic theory of arrows (vecteurs glissants, gleitende Vektoren,
cKoJIb3s1uMe BeKTOphl), the real case being studied in the article [7, 8], and some
aspects of the complex case in the papers [9-11]. o

The main object of the present investigation are the affine and rigid
motions, the definitions and the main properties of which are given and studied
in complex standard vector spaces.

Strange though it may seem, the mechanical literary sources even of recent
time are entirely void of a strict mathematical definition of the rigid body concept
capable of satisfying the logical standards of twentieth century’s mathematics. The
authors of mechanical textbooks, treatises, and monographs purely and simply
take it for granted that the readers are familiar with the rigid body concept on an
intuitive (alias physical) level at least; that this notion is a priori self-evident and
requires, therefore, no mathematical definition at all; and that all that remains to
be done is to describe mathematically the mechanical behaviour of this statical
and dynamical entity in various situations under the action of certain systems of
forces.

A vivid picture of the present state of affairs in rational mechanics, as regards
the rigid body concept, has been drawn by W. Noll in his article [12]:

“It is a wide spread belief even today that classical mechanics is a dead
subject, that its foundations were made clear long ago, and that all that remained
to be done is to solve special problems. This is not so. It is true that mechanics of
systems of a finite number of mass points has been on a sufficiently rigorous basis
since Newton. Many textbooks on theoretical mechanics dismiss continuous
bodies with the remark that they can be regarded as the limiting case of a particle
system with an increasing number of particles. They can not. The erroneous belief
that they can had the unfortunate effect that no serious attempt was made for a
zon2g6g<):riod to put classical continuous mechanics on a rigorous axiomatic basis”
p. . .

This anachronism is a lamentable outgrowth of the Lagrangean dynamical
tradition. It has been conceived in Lagrange’s notorious work Méchanique
Analitique (sic) [13] and has been brought up by his uncritical adepts. In the
Avertisssement of his book Lagrange has written:

“On ne trouvera point de Figures dans cette Ouvrage. Les méthodes que j’y
expose ne demandent ni constructions, ni raisonnements géométriques ou
meéchaniques, mais seulement des opérations algébriques assujettis & une marche
réguliere et uniforme.” :

As it is more often than not the case, before misleading his readers Lagrange
misleads himself. The only true something the above excerpt contains is that there
are no figures indeed in the whole of Méchanique Analitique. No mechanics can
be made without geometry — neither mathematical, nor technical. Without
geometry analytical mechanics demotes to flesh without a skeleton. Everybody
who has some, even though elementary, experience in solving dynamical problems
with understanding (mathematically, professionally, non-extemporaneously, we
mean) is aware of the cold fact that it is absolutely unthinkable to make a single
step in analytical dynamics without geometry.

The fundamental ideas lying at the bottom of the basic for analytical
mechanics concept of motion and rigid body are purely geometrical. The
belief that it is possible to make analytical mechanics by the aid of “méthodes...
ne demandent ni constructions, ni raisonnements géométriques ou méchaniques”
is not only erroneous, skin-deep and immature: this belief is dangerous at the
same time. Its immediate sequels are formalism, superficiality, and incompetence.
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It deprives analytical mechanics of its very essence. In the course of two clear
centuries (since the publication of the Méchanique Analitique, as a matter of fact)
this ill-fated belief has played a fatal rdle for analytical mechanics - it tricked this
science out of its most profound problems and drove it to a state the most
characteristic feature of which consists in the fact that — horresco referens — not a
single dynamical problem concerning rigid bodies subjected to geometrical
constraints has been solved in the proper manner since the appearance of the
Meéchanique Analitique in God’s earth.

Such statements might sound heretically for Lagrange’s most ardent
admirers. For a series of mechanical generations the Méchanique Analitique has
meant neither more nor less than the Bible for an orthodox Christian. Voila some
most instructive samples of almost religious admirations:

F. W. A. Murhard (the German translator of the Méchanique Analitique)
has written in the Vorrede of his version [14]:

“Herr de la Grange hatte sich dabei vorgestellt, alle Grundlehren der
mechanischen Wissenschaften unter einem Gesichtspunkt darzustellen, und auf
allgemeine Formeln zu bringen. Hierzu war er nun freylich mehr als irgend
jemand anders im Stande, er, der schon so manchen Preis davon getragen, so
manches Problem glucklich aufgelost hatte, der mit dem, was vor ihm gethan war,
vollig bekannt war, und der sogar einen Euler an Starke in Kalkul Ubertraf...
Schon Herr Euler forderte ja in seiner Mechanik, daBB der Leser sowohl in der
Analysis endlicher als unendlicher GroBen genugsam geubt sey, konnte dies Herr
de la Grange in unsern aufgeklarten Zeiten nach einem verflossenen Zeitraum von
mehr als 50 Jahren nicht auch fordern? — Ja sicher konnte er es fordern, wo nicht
in Deutschland, doch in seinem Vaterlande! — Sowenig also dies Werk Anfangern
im Calcul irgend eine angenehme Stunde verschaffen wird ;... um so mehr werden
Liebhaber tiefsinniger analytischer Untersuchungen mit dem groBten Vergnugen
alle mechanischen Gesetze hier entwikkelt finden... Mehrmals habe ich dies
Meisterwerk mit dem groBten FleiBe ganz durchstudiert, und stets nur aus der
Hand gelegt, um es mit doppeltem Vergniugen bald wiederum vorzunehmen.”

About half a century later, in his article [15], W. R. Hamilton has written:

“The theoretical development of the laws of motion of bodies is of such
interest and importance, that it has engaged the attention of all the most eminent
mathematicians, since the invention of dynamics as a mathematical science by
Galileo... Among the successors of those illustrious men, Lagrange has perhaps
done more than any other analyst, to give extent and harmony to such deductive
researches, by showing that the most varied consequences respecting the motions
of systems of bodies may be derived from one radical formula; the beauty of the
method so suiting the dignity of the results, as to make his great work a kind of
scientific poem.”

In our times, another most glowing Lagrangeanist has written in his treatise
[16] on analytical dynamics the following eulogy:

“The whole of analytical dynamics is based upon, and is developed from, the
theorem of Lagrange that I call the fundamental equation... The beautiful and
powerful theorem contained in the equations (6.2.1) and (6.2.2) was established by
Lagrange in 1760. It provides a simple and expeditious method of forming the
equations of motion for any dynamical system... The equations have a central
place in Lagrange’s great work, the “Mécanique Analytique” [sic]... published in
1788, one of the qpoch-_makmg books in the history of mathematics... The
Mécanique Analytique is the primary source of the subject of analytical
dynamics, and it is rightly regarded as one of the outstanding intellectual
achievements of mankind” (p. VIL, 76).
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Mais revenons a nos moutons. Referring to the geometry that the analytical
mechanics necessitates, we by no means bear in mind the synthetic Euclidean
geometry at all costs. It is true that mechanics is compelled to reject entirely,
finally, and once for all, the synthetic geometry, in order to become analytical. In
the same time it is also true that the Euclidean geometry has its algebraic
equivalent in the face of analytic geometry in standard vector spaces.

The standard vector spaces being — in consequence of a dira necessitas called
by the mechanical praxis in the course of the last century — accepted in the
capacity of a constructional material for analytical mechanics, in a quite natural
manner a mathematically social errand at once arises: to create an analytical
geometry in standard vector spaces. In other words, on the basis of appropriate
axioms and definitions involving V¢, only Vi, and nothing but Ve, to
construct an analytic geometry not only free from the aegis of the synthetic
Euclidean geometry, but also incarnating the categorical repudiation of anything
connected with the latter. This problem can be solved, and it has been actually
solved in the paper [6] already quoted above.

The theory of arrows, contrary to the wide-spread opinion, is applicable, in
analytical mechanics, not only to statics and dynamics, providing it with the
genuine mathematical device for a formal representations of the forces, but also
to kinematics, supplying it with the mathematical tool for the statical-
kinematical analogy. This circumstance, as well as the tendency for a
peremptory emancipation of analytical mechanics from synthetic Euclidean
geometry substantiated above, bring forth a program toward an algebraic theory
of arrows on the basis of corresponding axioms and definitions involving again
Vew» only Ve, and nothing but V. This program can be realized, and it is
actually realized, in the papers [10, 11] cited above.

After these preliminary remarks, we can proceed to our essential task: to
propose an analytic theory of affine and rigid motions in complex standard vector
spaces. It is true that, for analytical mechanics in the traditional sense of the word,
the real case is sufficient. Mathematicians, however, have an enormous appetite :
they are striving for swallowing as big a morsel as they can sink their teeth into. If
seriously, as regards analytical mechanics, working in V¢, instead of V only, one
responds Hilbert’s directive formulated in his famous Mathematische Probleme
[17] (Problem No6) envisaging the axiomatical consolidation of the logical
foundations of rational mechanics:

«Auch wird der Mathematiker, wie er es in der Geometrie getan hat, nicht
bloB die der Wirklichkeit nahe kommenden, sondern uberhaupt alle logisch
moglichen Theorien zu berucksichtigen haben und stets darauf bedacht sein, einen
vollstandigen Uberblick uber die Gesamtheit der Folgerungen zu gewinnen, die
das gerade angenommene Axiomensystem nach sich zieht” (S.307).

For the sake of brevity, the symbols Sgn,sgn :, Ax, Df, Pr, Dm, and Sch replace
the words notation, denotes (by definition), axiom, definition, proposition, proof,
and scholium respectively. The letters R and C are reserved for the fields of all real
and all complex numbers respectively, and F and C(F) denote any ordered field
and its complex extension respectively. The real and the complex standard vector
spaces are denoted by V and V, respectively, and V¢, as mentioned above,
stands for the standard vector space over C(F).

Quotations are made in the following manner. Sgn 1, Ax 2, Df3, Pr4, Schs,
and relation (6) of §7, for instance (the example is a fictitious one) are quoted
symply as Sgn 1, Ax2, Df3, Pr4, Sch 5, and (6) in § 7 itself, but as 7Sgn 1, 7Ax2,
7Df3, 7Pr4, 7Sch5, and 7(6) elsewhere.
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§1. Affine and rigid repers

Sch 1. All considerations in the first 3 paragraphs of this article are made in a
rather general, if not in the most general, mathemathical situation underlying in
rerum natura: in complex standard vector spaces V¢ over the complex

extensions C(F) of arbitrary ordered fields F; possibilities for further
generalizations are proposed by the Hermitean spaces Hc¢, over C(F), see for
instance the paper [3]. Yet V¢ has the priority over H¢, to have at its disposal
the most effective in technical respect operation vector multiplication. It is true
that this priority is depreciated to some extent by the fact that this operation is
rich in content in the 3-dimensional case only. In the same time it is also true that
the most reliable patron of these mathematical wares is analytical mechanics and
it certainly does not display a particular zest to travel in multidimensional spaces.
As it'is well known, however, the more general a mathematical theory 1s, the
more void of content in re it is. La généralisation pour la généralisation itself is,
however, no nonsense in mathematics; abreast of satisfying a purely
epistemological interest, it affords mathematicians to determine the exact borders
across which a mathematical notion becomes amorphous. The generalizations are
of greatest importance especially in those cases when mathematical notions are
still lacking in strict definitions: familiar examples in point from mathematical
history are legion in order to be adduced here; in any case, affine and rigid
motions, as well as affine and rigid kinematical bodies are still in such a
deplorable situation, as far as one could pass judgement upon in virtue of the
current mechanical literary sources. Anyway, a sound mathematician would
scarcely contest the importance of the mathematical policy of la generalization
pour l'axiomatisation, and many developments of modern mathematics are
fortunate offshoots of this everlasting trunk of mathematical creativity.

Sch 2. For the sake of brevity, a convention will be now proposed : a symbolic
settlement, convenient though incorrect, the only vindication of which consists in
the considerable technical simplifications due to economy of notations and
formulations.

As it is well known from the classical analysis, f being a differentiable function
over T — R, the relations

d
0)) d—{ =0 VeeT),
and .
(2 f=constant

are equivalent provided T is an interval.

In the sequel relations of the type (2) will be permanently used for the aims of
definitions and propositions, for which the relations of the type (1) are, simply and
purely, meaningless, for the plain reason that the left-hand sides of (1) do
downright not exist.

Indeed, no hypotheses will be made in the first 3 paragraphs of this article
either as regards the set-theoretical structure of the definitional domains T of the
functions f, or concerning the analytical character of the latter. In particular, T
may be nowhere dense, or f can be discontinuous at any point of T. It is more
than obvious that, under these conditions, no claims regarding relations of the
type (1) could be made, in spite of the fact that conditions of the type (2) may take
place either by definition or by proof.
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Now the convention mentioned in the beginning of this scholium consists in
the acceptance that we shall write down relations of the type(l) and we shall
consider them as equivalent with relations of the type (2) notwithstanding the fact
that the left-hand sides of (1) are by no means granted. In other words, we shall
write (1) as a stenographic record of (2) not only when the existence of the
left-hand sides of (1) is most problematic, but even when it is certainly lacking.

The convenience of this agreement will become obvious from the following
exposition in §1-3. The cases, when the existence of the left-hand sides of (1) is
conditio sine qua non for the mathematical consistency of the definitions and
propositions involved, will be clear from the context: in such cases the existence in
question will be secured by the conditions of the corresponding definitions and
propositions. .

For brevity’s sake, when referring to the agreement so elaborately explained
above, we shall speak of it as the constancy-convention.

Df1. An affine T-reper in V¢y is called any triad

3) a={a,}-1
of vector functions _

4) a,:T - Ve v=1, 2, 3)
with

) a,xa,.a;#0 (VteT)
provided

(6) T < C(F).

Sgnl. R, sgn: the set of all affine T-reper in Vee).

Prl. If

W) &={av}3=l €Rp,

®) P Tt B v=1, 2, 3; VteT)

a, xa,.a,

provided

)] a,+3=a, (v=1, 2; VteT),
then

(10) {a7'}3_1€R,.

Dm. (7), Sgn1, Df1 imply (5), hence the vectors (8) with (9) exist. Now [4,
Pr87, Pr29] imply

(11) a;'xa;'.a3'#0 (VteT)
and (11), Df1, Sgn1 imply (10).

Sgn2. a ! sgn: {a, '}, iff (7).

Df2. The affine T-reper @~ ! is called reciprocal to the affine T-reper a.

Df3. The affine T-reper (7) is called orthonormal iff



Georgi Chobanov, Ivan Chobanov

314
_ I w=y) - :

(12) a,a,= {0 (V) (u, v=1, 2, 3; VteT).

Pr2. If

(13) deRy,
then

(14) a'=a
iff @ is orthonormal.

Dm. [4, Pr94] implies

(15) a;! =a, v=1, 2, 3; VteT)
iff (12). Now Df3, Sgn?2.

Sgn3. @ ~ b sgn:

d

(16) d—;(aﬂb:‘)=0 (n, v=1, 2, 3; VteT)
provided (7) and

17) b={b,}3_,€R;.

and

Df 4. The affine T-reper d is called equivalent with the affine T-reper b iff
(18) a~b.

Sgnd. @ =~ b sgn: one at least of the conditions (16) is violated provided (7)
(17).

Df5. The affine T-reper d@ is called non-equivalent with the affine

T-reper b iff

(19) a~b.

Pr 3. (13) implies

(20) a~a.

Dm. If (7), then [4, Pr85] implies

21 a,a;' = {(1) g:;vz) (u, v=1, 2, 3; VteT).
Now Sgn 3.

Pr4. (13)

(22) beR,,
(18) imply

(23) b ~a.

Dm. If (7) and (17), then (18) implies (16) (Sgn3). On the other hand
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3
(24) b= % (b,,a:‘)av (u=1, 2, 3; VteT)
v=1
[4, Pr88] imply -
> 1 (A=p)
25 T (b,a;Na,b;)=b,b;' =
( ) v=l( ya Xav A ) nYa {0 (l#ﬂ)
A, pu=1, 2, 3; VteT) [4, Ax10, Ax9, Pr85], and (25), (16) imply
3 . d
(26) Z (- (6,a7")a,b;")=0

v=1

(A4 p=1, 2, 3; VteT). Let u be fixed (1=<p=<3) and let 1 take successively the
values 1, 2, 3; then (26) represents a system of 3 linear homogeneous algebraic
equations with respect to the unknown quantities

27 %(b“a.,'l (1=2us3, v=1, 2, 3; VteT).
The determinant D of the system
3 d
(28) ‘_f-l (Z(b" a; ')a,b;')=0

(1=u<3; A=1,2,3;VteT) is
a, bi' a,br! a; b’
29) D= a,b;' a,b;' a;b;! (VteT).
a, by’ a, b3 a,b3!
Now (29) and [4, Pr27] imply

(30) D=(ay.a, xa,Xby ' xb;'.b3") (VteT).
On the other hand,

31) ay.a, Xa,=a,xXa,.a, (VteT)
[4, Ax 8], and (31), (5) imply ,

(32) ay.a; xa, #0 (VteT).
Now (30), (32), and

(33) . bi'xb3'.b3' #0 (VteT)
[4, Pr87, Pr29] imply

(34) D#0 WteT).

Hence the system (28) admits only the zero-solution for the unknown quantities
(27), i.e.

(35) 2 (buai*)=0 W v=1,2, 3; VieT),
and (35), Sgn3 imply (23).
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Pr5. (13), (22), (18),

(36) ZeR,,
37 b~¢
imply
(38) a~2¢.
Dm. If (7), (17), and
(39) é={c,}3-1€Ry,
then (18) and
d
(40) E(b“c'_l)=0 (u, v=1, 2, 3; VteT)
(Sgn 3). On the other hand,
3
41) ' a“=12 (a,b;')b, (u=1, 2 3; VteT)
=1
[4, Pr88], whence
3
(42) a,c;'= X (a,by'Xbc; ")
A=1

(u, v=1, 2, 3; VteT) [4, Ax10, Ax9]. Now (42), (18), (40) imply

d
(43) Z(“"°:1)=° (, v=1, 2, 3; VteT)
whence (38) (Sgn 3).
Pr6. The relation ~ in R, defined by Sgn 3 is an equivalence relation in R.
Dm. Pr3-PrS.

Sch 3. In the above definitions the adjective affine has been repeatedly used.
This has been done in order to turn the reader’s attention to the fact that in all
former considerations the vector functions (4) are not obliged either to have
constant (with respect to T) lengths, or to make constant angles between
themselves (provided these notions “length” and “angle” are defined). Extremely
important for the applications, however, are those namely repers, whose vector
functions (4) have constant length and make constant angles between themselves.
This circumstance gives good ground for the following definitions.

Df6. An affine T-reper is called rigid (solid, Euclidean) iff
d
(44) E(a“a")=0 ([l, V=1, 2, 3; Vte T).
Df7. An affine T-reper is called non-rigid (non-solid, non-Euclidean,
properly affine) iff it is not rigid.
Sgn5. E; sgn: the set of all rigid T-repers.

Pr7. Any orthonormal T-reper is rigid.
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Dm. (7), (12) (Df3) imply (44).

Pr8. If

(45) a ek,
then

(46) aleE;.

D m. (7), (45) imply (44) (Df 6). On the other hand, (7) and Sgn 2, Df6 imply
that the proposition will be proved if it is established that
d

47 Z(a,."a:‘)=0 (w v=1, 2, 3; VteT).
To this end let us note that (8), (9) imply
Qu+1XAuy2 @y XAyva A,,
a,xa,.a; a,xa,.a; A

(48) a;‘a;' =

(u, v=1, 2, 3; VteT) where

_|ev+1@u+1 @v+1@us2

A, =
(49) " a,28,+1 Qy4+2a,42
=1, 2, 3; VteT) and
w, v=1, 2, ) a? a,a, a,a,
(50) A=(a,xa,.a;)a, xa,.a,= a,a, aj; a,a,

a,a, a,a, a3
(VteT) [4, Prl, Pr4, Pr28]. Now (48)-(50), (44) imply (47).
Pr9. (45), (22), (18) imply
(51) beE,.
D m. (45), (3) imply (44) (Sgn 5, Df6). On the other hand, (18) implies (23)
(Pr4), and (3), (17), (23) imply (35) (Sgn3). Now (24) imply

(52) b,b, = % 23'.1 (b,a; ' Xa; ' b,)a,a,)
o=1 t=
(u, v=1, 2, 3; VteT) [4, Ax8-Ax10] and (52), (35), (44) imply
(53) %(b“bv)=0 n, v=1, 2, 3; VteT)
whence (51) (Sgn5, Df6).
§2. Affine and rigid systems of reference
Sch1. The notion of a moving system of reference is traditionally

introduced in analytical mechanics as an a priori-notion, i.e. on an intuitive
physical-geometrical level. It turns out, however, that this notion is susceptible of
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a strict mathematical formalization in situations much more general than those
that have given rise to it, conserving at that its basic attributes: as a matter of fact
this notion is definable in arbitrary standard vector spaces over the complex
extensions of any ordered fields.

There are two ways, not essentially different from one another, to define
moving systems of reference in V. The first of them is more symmetrical, while
the second one is technically more convenient. We shall adduce them both
consecutively, bringing forward their mutual connection.

Pr1. 1(4)-1(6),

(1) A,:T—> Ve (v=1, 2, 3),

2) a,A,+a,A,=0 , v=1, 2, 3; VteT)
imply :

3) 4,=(a,, A,) v=1, 2, 3; VteT)

are non-zero arrows in Vg .
Dm. The conditions 1(5) imply

4) a,#o v=1, 2, 3; VteT)
and (2) with y=v imply

(5) ' a,A,=0 (v=1, 2, 3; VteT).
Now [10, 2 Df5].

Df1. The set

(6) &={av}3=l

provided 1(4)-1(6), (1)-(3) is called a (moving) affine T-system of
reference in V¢p (of the first kind).

Sgnl. A, sgn: the set of all (6).

Sch 2. The conditions 1(5), (2) and [4, Pr 103] imply that the system of vector
equations

©) axa,=A, v=1, 2, 3; VteT)
has axactly one solution
(8) a:T—- VC(F)
namely
1 3
) a=3 T a,'xA, (VteT).
v=1

Df2. The arrows (3) are called the axes of the system of reference (6).

Df3. The functions 1(2) are called the axis vectors of the system of
reference (6).
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Df4. The function (8) defined by (9) is called the origin of the system of
reference (6).

Pr2. 1(4)-1(6), (1), (2), (9) imply

(10) azdira, (v=1, 2, 3; VteT).
Dm. (7), [6, 4 Sgn1].

Df1bis. The ordered pair

(1) a=(a, a)

of a function (8) and a T-reper 1(13)iscalled a(moving)affine T-system of
reference in V¢i (of the second kind).

Sgn2. A, sgn: the set of all (11). . ;
Sch3. The equivalence of Df1 and Df 1bis is obvious. Indeed, let first
(12) o’i={d‘,}3=1ezr

be given. Then the functions 1(4), (1) with the properties 1 (5), (2) are known, and
the function (8) is defined by (9). In other words,

(13) a=(a, {a,}3-1)€A4;s
is defined.
Inversely, let (13) be given. Then the functions 1(4) with 1(5), as well as (8)

with (9), are known, and the functions (1) are defined by (7); it is immediately seen
that they satisfy the conditions (2). In other words, (12) is defined.

Sch4. Due to the correspondence between 4 ;. and A, (see Sch3), the terms
introduced: by Df2-Df4 for the systems of reference of the first kind may be
adapted for the systems of reference of the second kind too. Since the
corresponding definitions are obvious, we shall not adduce them explicitly here.

Sch5. In the following exposition a preference is given to Df1 bis.

Pr3. If

(14) (a, d) €Ay
then

(15) (a, a')eA,.

Dm. (14) implies 1(13), whence

(16) &' eR,.

Now (14), 6) imply (15) (Df1bis, Sgn2).
Sgn3. a”"'sgn: (a, a~ ') iff (14).
Df5. a~! is called reciprocal to a.
Sgn4. rzasgn:
(17 ;—t((r—a)a:‘)=0 | (v=1, 2, 3; VteT)

provided (13), 1(8), 1(9),
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(18) r:T— VC(.F)‘
Df6. r is called invariable with respect to a iff
(19) rzo

provided (13), 1(8), 1(9), (18).

Sgn5. r2 asgn: one at least of the conditions (17) is violated provided (13),
1(8), 1(9), (18).

Df7. r is called non-invariable with respect to a iff
(20) rza
provided (13), 1(8), 1(9), (18).

Sch6. In the light of Sch3 the meaning of the symbols rz& and rzé
provided (12) and (18) is obvious.

Sch7. (13), Sgn2, Df1bis, 1Df1, (18), [4, Pr88] imply
3
1) r—a= X ((r—a)a; ')a, (VteT).

v=1
Now (21), (17) manifest that the meaning of the relation (19) reduces to the
requirement that the components (r—a)a, ' (v=1, 2, 3) of the vector function r—a
with respect to the reper a, (v=1, 2, 3) must remain constant over T.

Pr4. (13) implies

(22) aza.
Dm. Trivial in the light of Sgn4.
Pr5. (13) implies

23) a+a,za v=1, 2, 3).
Dm. (23) is equivalent with

d
(24) Ei(""‘"_l)=° m v=1, 2, 3; VteT)

(Sgn4). Now 1(21) implies (24).

Sch. 8. As it is well known from analytic geometry, a necessary and sufficient
condition for the colinearity of 3 vectors r,eV¢r (v=1, 2, 3) is

(25) Py XPr,+ryXry;+ryxry=o0

[6, 4Pr17]. The following proposition displays that the property (25) remains
invariant with regard to the relation (19) defined by means of Sgn4.

Pré. If
(26) a€A;
@7) r,: T = Ve v=1,2,3),

(28) r,za v (v=1,2,13),
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9 . roXr,+r,xry+ryxr,=o (t=t€T),
then

(30) P XPy+ P, Xry+ryXr, =0 (VteT)

Dm. (29) is equivalent with

(31) (ry—r3)x(r;—r3)=o0 (t=7eT)
and (28) is equivalent with

(32) zd;((r"—a)av“)=0 u, v=1, 2, 3; VteT)
provided (13), whence

(33) %((n—ru)a:‘)=0 @ v=1, 2, 3; VteT).
The identities

3 .
39 r,—r,= X ((r,—r,)a;')a, (4 p=1,23;VteT)
v=1

[4, Pr88], together with (33), imply

(395) P —ry=0,a,+0,a,+03a; VteT),

(36) ry,—r3y=p,a,+p,a,+pia, VteT)
where

da, dp
37 Al = x = = & I
(37 = &t 0 (v=1, 2, 3; VteT)

Now (35), (36) imply
(38) (ry—r3)x@r,—ry)=@,f,—a,B,)a, xa,
+(&ZF3_&3EZ)"2xa3+(&3ﬁ-l_&1p3)a3xal

(VteT) [4, Pr37), @, and B, denoting the conjugate values of a, and B,
(v=1,2,3) respectively, and (38), 1(8), 1(9),

(39 a3=0,B3—a3F8,, ay=&3B,—a, B, @ 2=0,f,—a, 8,
imply
(40)  (ry—ry)x(r;—r3)=(a,xa,.a;{02387 ' +a31 a3 +aga3")
(VteT), where

doy _ da; = dau__
dt  dt  dt

according to (39), (37). On the other hand, (40), 1(5), (31) imply

(41) 0 (VteT),
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42) a3a; ' +ay 4 o a3t =0 (t=1).
By virtue of 1(11) the relation (42) implies '

43) 0y =033 =03, =0 t=1),
and (43), (41) imply

44 Az =033=03;=0 (VteT).
Now (44), (40) imply

(CS)) (ry—r3)x(ry;—ry)=o0 MteT).

Since (45) is equivalent with (30), the proposition is proved.
Sch 9. As it is well known from analytic geometry, a necessary and sufficient
condition for the coplanarity of 4 vectors 7,€ Ve (v=1, 2 3, 4) is
© (46) (ry—ry)x@y—ry).(r3—ry)=0
[6, Pr 19]. The following proposition displays that the property (46) is invariant
with regard to the relation (19) defined by Sgn4.

Pr7. (26), :

@7) reVem | v=1, 2, 3, 4,

(48) r, o v=1, 2, 3, 9),

(49) (ry—ry)x(ry;—ry).(r3—r,)=0 (t=7€T)
imply

(50) (ry—ry)x(@ry—ry).(r3—r,)=0 (VteT).

Dm. If (13), then i in the same manner, as in the demonstration of Pré6 it is
proved that

(51) (ry—ry) x(r,—ry)=(a; xay.a3 2387 '+ a3 85 +a,5a5")
( VteT) with appropriate «;;, a,3, ®3; satisfying (41), whence
(52)  (ry—ry)X(rp—ry).(rs—ry)=(a, X a,.a5 )23 (@it (rs—r,))
+&31 (@2 1 (r3—ry))+ a2 (as ! (r3—ry)) (VteT).
Now (52), (49), 1(5) imply
(53) azs(@r t (r3—ry))+as (a7 ' (r3—ry))+ay2 (@3t (r3—r,))=0
(t=1). On the other hand, as in the demonstration of Pr6 it is proved that 47),

(48) imply
(54) Z«’s_’4)a: =0 (v=1, 2, 3; VteT).

Then (54), (41), (53) imply
(55) azs(@ay ! (ra—ry))+os3g(@az  (rs—ry))+ayz(a3 (ry—ry))=0

(VteT), and (52), (55) imply (50).
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Sch10. Pr6 and Pr7 explain the denomination affine system of reference
given to the elements of A;. Physically spoken, the space of the functions (18)
satisfying (19) is deformed in the course of the “time” t € T as an elastic body with
a linear deformability, conserving lines and planes.

Sch11. Let (13),

(56) B=(, {b,}3-1)€Ar,
(57) azp,
(58) ' ata,zf v=1, 2, 3)

hold. The definition (17) of the relation (19) implies that the relations (57) and (58)
are equivalent with

(59) %((a——b)b:‘)=0 v=1, 2, 3; VteT)
and p
(60) d—t((a+a,.—b)b:‘)=0 , v=1, 2, 3; VteT)

respectively. On the other hand, (59) and (60) imply
. P )
(61) 21@b1)=0 W v=1, 2, 3; VteT)

and, inversely, (59) and (61) imply (60). In other words, the systems of conditions
(59) and (60), on the one hand, and (59) and (61), on the other hand, are equivalent.

Sch12. We shall now implant this observation into the definition of a
mathematical notion which is basically important for both kinematics and
dynamics of rigid . bodies: the notion of equivalence of moving affine
systems of reference.

Sgn6. o ~ Bsgn: (59), (61) provided (13), (56).
Df8. a is called equivalent with g iff
(62) a~p
provided (13), (56).
Sgn7. o = fsgn: one at least of the conditions (59), (61) is violated provided
(13), (56).
Df9. « is called non-equivalent with g iff
(63) a~p
provided (13), (56).
Pr8. (13) and
(64) BeA,
imply: (62) iff (57), (58).
Dm. Sch1l1, Sgné.
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Pr9. (13), (56) imply: (62) iff (57) and

(65) {a,}3-1~{b,}3-1
Dm. Pr8, Sch1l, 1Sgn3. :
Pr10. If

(66) a=(a, d) €Ay,
(67) B=(b, b)eA,,

then (62) iff (57) and 1(18).
Dm. Pr9, Df1 bis.
Pr11. (26) implies
(68) an~a
Dm. (22), (23), Pr8.
Pr12. (26), (64), (62) imply

(69) B~ a.

Dm. If (13), (56), then (69) is equivalent with
7 bza,

(71) {b, }3=1 ~ {a, }3‘=1

(Pr9). On the other hand, (62) implies (65) (Pr 9), whence (71) by virtue of 1 Pr4. In
other words, the proposition will be proved, if (70) is proved, i.e.

(72) ‘%((b—a)av‘l)=0 v=1, 2, 3; VteT)
(Sgn 4). To this end let us note that
(73) a;l= 31@:15,,)1;;1 (v=1, 2 3; VteT).
[4, ‘Pr89] imply "
(74) (b—a)a; ' = El (b,a; ' X(b—a)b, ")
si=

(v=1,2,3;VteT)[4, Ax 8-Ax 10]. On the other hand, (71) is equivalent with 1(35)
(1Sgn3), and (69) implies (59) (Sgn6). Now (74), 1(35), (59) imply (72).

Pr13. (26), (64), (62),

(75) V€A,
(76) B~y
imply

() o~y
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Dm. If (13), (56),

(78) y=(c, {¢,}3=1)€4r,
then (62) is equivalent with (57) and (65); (76) is equivalent with
(79) bzy,
(80) | {8,331 ~ {a,}3-1;
and (77) is equivalent with
(81) azy,
(82) {a, =1~ {c,}3=1

(Pr9). On the other hand, (65)and (80) imply (82) (1 Pr5). In other words, the
proposition will be proved, if (81) is proved, i.e.

(83) 2 (@-o)er =0 (v=1, 2, 3; VieT)
(Sgn4). To this end let us note that
3 .
(84) c;l= X (¢;'b,)b;! (v=1, 2 3; VteT)
A=1 .

[4, Pr89] imply
(85 (@a—bd)c,= % (bycy ' Xa—b)b3')
A=1

(v=1, 2, 3; VteT) [4, Ax8-Ax 10]. On the other hand, (80) implies 1(40) (1 Sgn 3)
and (57) implies (59). Now (85), 1 (40), (59) imply

(86) » -;t-((a—b)cv_‘)=0 (v=1, 2, 3; VteT).
Besides, (79) implies

®7) %((l,_c)c;l)=o (=1, 2, 3; VteT)
(Sgn4). Now

(88) (a—c)c; ' =(a@—b)e; ' +(b—c)ei!

(v=1, 2, 3; VteT), (86), (87) imply (83).
Pr 14. The relation ~ in A defined by Sgn 6 is an equivalence relation in Ar.
Dm. Pr11-Pr13.
Pr15. (26), (64), (62), (18), (19) imply
(89) : rzp.

Dm. If (13) and (56), then (62) implies (59), (61) (Sgn 6) and (19) implies (17)
(Sgn4). The relations
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3
(90) b;'= X (by'a,)a;? (v=1, 2, 3; VteT)
u=1
[4, Pr88] imply
3
91) (r—5b)b;! = Z (a by Y(r—b)a; ')
» »

_x (@,b; ' N(r—a)a; ') + s (a,b; ' X(@—b)a; ")

p=1 u=1-

(v=1, 2, 3; VteT) [4, Ax8-Ax 10}, i.e.

92) (r—>0)b,! = ; (a‘,b‘,_‘)((r—a)a,,‘l)+(a—b)b‘._1
u=1

(v=1, 2, 3; VteT) [4, Ax8-Ax 10, Pr89]. Now (92), (59), (61), (17) imply
93) %((r—b)b:‘)=0 (v=1, 2, 3; VieT),

whence (89) (Sgn4).

Pr16. (26), (64), (18),

94) rza implies rz
imply (62).

Dm. (22), (23) provided (13) and (94) imply (57), (58), whence (62) (Pr 8).

Pr17. (26), (64)' imply: the set of all (18) with (19) coincides with the set of all
(18) with (89) iff (62) holds.

Dm. Pr15, Prli6.

Sch 13. All former considerations in this paragraph concern the general case
when no restrictions on the axis vectors 1(4) are imposed with the only exception
of 1(5). Extremely important for analytical mechanics, however, are those systems
of reference (and hence the motions defined by such systems, see §3) the axis

vectors of which have constant lengths and make constant angles between
themselves. This circumstance justifies the following definitions.

Df10. A moving affine T-system of reference is called rigid (solid,
Euclidean) iff its axis vectors form a rigid T-reper.

Df11. A moving affine T-system of reference is called non-rigid
(non-solid,non-Euclidean, properly affine) iff its axis vectors form a
properly affine T-reper.

Sch 14. Let us note that the definitions of rigidity and non-rigidity ofa
moving system of reference impose restrictions on its axis vectors only, while its
origin may be entirely arbitrary.

Sgn8. T, sgn: the set of all solid T-systems of reference.
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Pr 18.l (64),

95) aeX,,
(62) imply '
(96) BeZ,.

Dm. Sgn8, Df10, 1Pr9.

Sch 15. The meaning of Pr 18 is that the property rigidity of a system of
reference in V¢, is invariant with respect to the equivalence relation
~ in Ay defined by Sgn 6. In other words, a Tigid system of reference cannot be
equivalent with a properly affine system of reference. In the same time, an
observant eye has certainly established that the condition (62) has not been used
in the proof of Pr 18 in its full range: no condition for the origins of the systems of
reference involved have been taken into consideration. This is easily explained in
the light of Sch 14. _

_The following proposition reveals' a fundamental property of the rigid
systems ‘of reference in ‘

Pr19. (95), 27), (28) imply
- 97) ’ %((rl—rs)(rz—r3))=0 (VteT).

Dm. (95), (13) imply 1(44) (Sgn 8, Df10, 1 Df6). On the other hand, in the
same way as in the demonstration of Pr 6 it is proved that the relations (33), (34)
hold. The latter imply s

3

©98) (ry—r3)rz—r3)= T I ((ry—r3)a; ' Yay ' (r;—r3)Na,a,)

u=1 v=1
(VteT) [4, Ax8-Ax10] and (98), (33), 1(44) imply (97).

Sch16. The geometrical interpretation of Pr19 reads: if 3 points are
invariable with respect to a rigid system of reference in V¢, then their mutual
distances (if any), as well as the angles (if any) between the segments these points
determine, remain constant in the course of the “time” ¢.

Let, exemply gratia,

(99) r,.=a+a, ; (v=1, 2; VteT),
(100) ry=a VteT).
Then the conditions (28) are satisfied (Pr4, PrS5) and (99), (100), (97) imply
d
(101) E(a1 a,)=0 VteT),

i.e. one of the relations 1(44). The other ones can be obtained in the same manner.
In this way it is seen that the definitional conditions 1(44) of the notion of a rigid
system of reference are a particular case of the basic ‘property (97) of rigidity.

Pr20. If
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(102) | a=(a, {a,}3-1)€Zy
then
(103) ata;'za v=1, 2, 3).

D m. The relation (103) is equivalent with 1(47) (Sgn 4), proved in 1 Pr8 for
rigid T-repers (3). Now Sgn8, Df10.

Pr21. (95) implies
(104) a l~a
Dm. Sgn3, Pr4, Pr20, Pr8.

Df12. An affine T-system of reference is called orthonormal iff its axis
vectors form an orthonormal T-reper.

Df13. An affine T-system of reference is called non-orthonormal iff it is
not orthonormal. ‘

Sgn 17. It should be noted that the orthonormality and the non-orthonorma-
lity of a system of reference do not depend on the properies of its origin.

Pr22. If a system of reference is orthonormal, then it is rigid.
Dm. Df12, 1Pr7, Df10.
Pr23. (95) imply
(105) a l=a
iff @ is orthonormal.
Dm. Sgn3, 1Pr2.

§3. Affine and rigid motions

Sch1. We now proceed to the definitions of two most important for the
rational mechanics notions: those of affine and rigid motions.

The motion concept in rational mechanics aspires to formalize mathemati-
cally as adequately as it is possible phenomena going off in the real world. There
is a great variety of physical motions and any of them calls for its specific
mathematical description.

The special features of any particular motion are predeterminated by the
characteristics of the object that moves. The analytical mechanics concerns itself
mainly with rigid bodies. Their movements are, therefore, of greatest interest
for this science. They are called rigid motions and they are the chief object of
present studies. A

Physically speaking, in order to describe the movement of a rigid body one
ataches to it an apropriate system of reference (“invariably connected with
the rigid body”) and, instead of studying the movement of the rigid body itself, one
studies the motion of this system of reference. Now the choice of the system in
question can be made in an infinity variety of manners. And yet, there is an
am%lgm;llating feature among all of them: they are invariant with respect to
each other.
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All notions used above, namely rigid body, motion, system of reference, and
invariance of such systems, are by no means a priori notions. They are purely
mathematical notions — mathematically as pure as the number concept in
arithmetic — and the fact that epistemologically their genesis has physical origins
does not a whit impair this circumstance. In very deed, the physical genesis of the
motion concept does not one jot differ from the physical genesis of the natural
number concept or that of the geometrical point-line-plane concepts.

For rational mechanics this origin-problem is a matter of principle, and it is
high time, in this connection, to dot the 1’s and to cross the t’s once for ever. First
of all, this is a problem the philosophers gladly chew the cud over but
mathematician despise: it is a philosophical rather than a mathematical problem.
In the second place, contrary to many prejudies, the only difference in the physical
genesis of a geometrical ball, for instance, and of a mechanical one, consists in the
degree of abstraction and — owing to it —in the amount of mathematical
attributes ascribed to both of these notions: in contrast to the geometrical ball,
the mechanical one is.supplied with density and, as a result, with mass and
mass-center ; it may be subjected to geometrical constraints, restricting its possible
positions in space; it may be acted upon by active forces (given a priori in the
condition of any dynamical problem) and by passive forces (generated by the
geometrical constraints); the constraints themselves may have a vast variety of
dynamical properties resulting in the different characters of the forces they bring
forth; at last, the mechanical ball may move in space and its motion originates’
such dynamical entities, as for instance momentum of motion, kinetical moment,
kinetic energy, acceleration energy. And so on, and so forth, etcetera.

Physical origin? For mathematics the physical world is no criterion. The only
arguments for a sound mathematician are the irreproachable mathematical
definitions and the flawless mathematical demonstrations. In this respect the
difference between a mathematical ball and a mechanical ball vanishes into thin
air. As a matter of fact, the mechanical ball is susceptible to an abstract
axiomatical definition satisfying all modern criteria of mathematical rigour. As
regards the rigid motion concept, this definition is one of the main aims of the
present work. As already hinted, it is a complicated one. If the following
exposition does not seem spacious, the reason is that the preparatory work has
been accomplished in the two preceding paragraphs.

Df1. An affine T-motion in Vg, is called any element of a set M., for
which a set N exists satisfying the following conditions:

Ax1l. Ny c A xM;.

Ax2. ae Ay implies: there exists me M, with (¢, m)e N.
Ax3. (a,, m))eN (v=1, 2), a, ~a, imply m,=m,.
Ax4. me M, implies: there exists ae A; with (o, m)e N .
AxS. (a,, meN; (v=1, 2) implies a, ~ a,.

Pr1. The system of axioms Ax1-Ax5 is consistent.

Dm. [18]. '

Pr2. The system of axioms Ax1-Ax5 is categorical.

Dm. [18].
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Sgnl. a&msgn: (¢, m)e N, provided ae A, me M.
Df2. « is called associated with m iff
(6)) » a&m

provided ae Ay, meM,.
Sgn 2. astgn: (¢, m)eN, provided ae A, me M.
Df3. « is called non-associated with m iff
) a&m

provided ae A;, me M.

Sch2. Owing to the notation (1), the axioms Ax2-Ax 5 may be rewritten in
the form:

Ax2&. ae Ay implies: there exists me M, with a&m.
Ax3&. o, &m, (v=1, 2), a, ~ a, imply m,=m,.
Ax4& meM, ?mplies: there exists ae A; with a&m.
Ax5&. o, &m (v=1, 2) imply a, ~ a,.

Sch 3. The development of the theory of the affine T-motions in V¢, (rigid
body kinematics in the case of V instead of V) consists in the revealing of
those properties of the affine T-systems of reference in V¢ which remain
invariant with respect to the equivalence relation ~ in A, defined by 2Sgn6..

Sch4. 2 Pr 17 manifest that the relation 2(19) defined by 2 Sgn 4 is invariant
with respect to the equivalence relation ~ in A, defined by 2Sgn 6. In other
words, this relation is transferable from the affine T-systems of reference in V¢,
into the affine T-motions in V. This circumstance justifies the following

definitions. . ;
Sgn3. rzmsgn: rza provided 2(18), 2(26), me M, a&m.
Df4. r is called invariable with respect to m iff
(€)) rzm
provided 2(18), 2(26), meM,, a&m.
Sgn4. r2msgn: r 2a provided 2(18), 2(26), me M, a&m.
DfS. r is called non-invariable with respect to m iff
) rzm

provided 2(18), 2(26), me M, a&m.
The M -versions of 2Pr6 and 2Pr7 read as follows.

Pr3. 2(27), 2(29),
©) meM,,
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6) : r,zm v=1, 2, 3)
imply 2(30).

D m. (5), Ax 4& imply : there exists a € A, with (1). Then (6), Sgn 3 imply 2 (28).
Now 2Pr6.

Pr4. 2(47), 2(49), (5),

@) r,zm v=1, 2, 3, 4
imply 2(50).

D m. (5), Ax 4& imply : there exists a € A, with (1). Then (7), Sgn 3 imply 2 (48).
Now 2Pr7.

Sch5. 1 Pr18 manifests that two systems of references in V¢ cannot be
associated with the same motion in V¢, unless they are simultaneously either
rigid or properly affine: supposing the contrary one arrives at a contradiction
with Ax 5& and 2 Pr 18. In such a manner, the notions of rigidity and non-rigidity
are transferred from the systems of reference in V¢ onto the motions in V¢,
these systems are associated with. This circumstance justifies the following
definitions.

Df6. A T-motion m in V¢, is called rigid (solid, Euclidean)iffae Ay,
a&m imply aeX,.

Df7. A T-motion m in V¢4 is called non-rigid (non-solid,
non-Euclidean, properly affine) if it is not rigid.

Sgn5. S, sgn: the set of all rigid T-motions in V.
The S -versions of 2Pr19 reads:

Pr5. 2(27),

®) meSy,
(6) imply 2(97).

Dm. (8), Ax4&, Sgn S, Df6 imply : there exists a € £, with (1). Then (6), Sgn 3
imply 2(28). Now 2Pr19.

Pré6. 2(95), (8), (1) imply

) a t&m.

Dm. Sgn5, Df6, 2Pr21, Ax3&.

Pr7. If a€ Ay is orthogonal and (5), (1), then (8).

Dm. 2Pr22, Sgn5, Df6.

§4. Instantaneous angular velocity

Sch1. In 1 Sch1 some words have been said about the generality of the
formulations of the first 3 paragraphs of the present paper. As regards motions,
however, we have reached the Ultima Thule in our exposition: any further
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progress is eo ipso foreordained by mathematical specializations. These
specifications concern in the utmost degree three mathematical factors: the
standard vector space as the stage of events; the set-theoretical nature of the
definitional domains of the functions involved as locus standi; and, last but not
least, the analytical character of the functions themselves as dramatis personae.

To begin with, we shall impose the most severe restrictions on these factors:
the standard vector space will be, by hypothesis, the real one V; TeR will be an
interval; and the functions involved will be supposed at least two times
differentiable in any point of T (sometimes without an explicit reference to this
condition). Right from the start we shall prove under these conditions a most
remarkable kinematical theorem, due to Euler (although in a considerably
different form) and we shall derive from it important mathematical corollaries;
afterwards we shall examine the possibilities of its generalization.

Prl. If

(1) Tc<R
is an interval, the functions

) a,:T->V (v=1, 2, 3)
are differentiable in T, and the function

3) @& :T->V
satisfies

4) ‘Z"=a’>xa, (v=1, 2, 3; VteT),
then 1(44).

Dm. A necessary condition for the consistency of the system of vector
equations (4) is

da, da, _ )
5) a,,?t-—i-a, It =0 (n, v=1, 2 3; VteT)
[4, Pr100]. On the other hand, (2) and
da
6 Y g vV . =
(6) i (v=1, 2, 3)
imply
da, da, _ .
@) T LS , v=1, 2, 3; VteT)
and (5), (7) imply
da, da, _ .
8) 7a,+a,,7—0 W v=1, 2 3; VteT)

whence 1(44).

Pr2. (1), (2), 1(5), 1(44) imply: the system of vector equations (4) has exactly
one solution (3), namely
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13 da
- -1, %4y
2.2 e g

v

Dm. [4, Pr103].
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VteT).

Sch2. 1Sgn5, 1Df6 imply that Pr1 and Pr2 hold iff

10) {a,}3-1€E;.

Df 1. The function (9) is called theinstant angular velocity (or briefly

angular velocity) of the reper (10).
Pr3. (1), (2), 1(5) imply

; da 2 da;?!
-1 v __ v
(ln vflav X d -—vfiavx 2t
Dm. The identity
3
(12) Z a,xa =
v=1
[4, Pr122] implies
3 dav -1 3 da:‘
(13) vfl dt xa,  + vfl a, x Qi =0
whence (11) [4, Pr19].
- 1-3 da:l
(14) o= 3 v‘:‘.l a,x —
Dm. Pr3.
PrS. (1), (2), 1(5), 1(44), (14) imply
(15) da:l—-a‘)xa'1
dt v

Dm. 1(11), 1(47), Pr2, and

(16) (@ ') '=a,
[4, Pr9Q].
Pr6. (9) implies
17 o o= 1 % a x5
an T 2,0, " dt
iff the reper (10) is orthonormal.
Dm. 1 Df3, [4, Pr94].
Pr7. 1(7), 1(17), 1(18) imply
3 da 3 db
—14 Z0v =1 90 22y
(18) X alx 2 X b, " x It

v=1 v=1

VteT).
VteT)

VteT),
(VteT).

(v=1, 2, 3; VteT).

(v=1, 2, 3; VteT)

(VteT)

(VteT).
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Dm. 1(18) implies 1(16) (1Sgn3). Hence the identity 1(41) imply

da, 2 _y.db,; _ )
(19) _d—t—_lfl(a"bl ) dt (ﬂ_11 29 3a VtGT),
whence
3 da s 8 db
-1, %% _ » -1 -1, %9
(20) “E‘.la“ x T “}jl(bl a,)a,’ x at
(VteT). Now (20), 2(90) imply
3 _. da 3 . db ;
1) “Elanlx—(i_:=1§1b"lx7ti (VteT),
i.e. (18).
Pr8. 1(7), 1(17), 1(18) imply
3 da—l 3 db—l
X L= X = X
22) v=la,>< I v=1bvx I (VteT)
Dm. Pr7, Pr3.

Pr9. If @, and &, denote the instantaneous angular velocities of the repers
1(45) and 1(51) respectively and if 1(18), then

(23) D, =D, ' VieD).
Dm. Df1l, Pr7.

Pr10. If @, and &, denote the instantaneous angular velocities of the repers
1(45) and 1(51) respectively and if (23), then 1(18) holds.

Dm. If 1 (3) and 1(17), then Df 1, (23) imply (18). On the other hand, (4) and
(15) imply

d

(24) =6,xa, =1, 2, 3; VteT)

and
db;t  _ =1
(25) T =d,xb, (v=1, 2, 3; VteT)
respectively, and (24), (25) imply
d da db; !
2 3 -1y_9% p-1 v
(26) dt(a“b' ) dt b +a, dt

=d,xa,.b;'+a,. @, xb;"' (4, v=1, 2 3; VteT).
Now (26), (23) imply 1(16), i.e. 1(18) (1Sgn 3).
Prll. If @, and @, denote the instantaneous angular velocities of the repers
1(45) and 1(51) respectively, then (23) iff 1(18) holds.
Dm. Pr9, Pr10.
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Sch 3. Pr 11 displays that the equality of the instantaneous angular velocities
of two rigid repers is a necesarry and sufficient condition for their equivalence. In
other words, the notion of instantaneous angular velocity may be transferred from
the particular rigid systems of reference onto the classes of equivalence these
systems determine by virtue of the equivalence relation ~ in Ry, defined by
1Sgn3. In other words, the instantaneous angular velocities are mathematical
characteristics for these classes of equivalence which — being dependent on the
rigid repers only — may be transferred onto the rigid motions these repers
determine. This is soon done. For the time being we shall derive some other
corollaries from the definition (9).

Pr 12. If the functions (2) are infinitely many times differentiable, then 1(5) and
1(44) imply

3 dmav dn av— 1

@7 Eam X Tar T A X ar
(m, n=0, 1, 2,...; VteT).

Dm. [4, Pr89] implies

3
(28) a,= X (a,a,)a,’ v=1, 2, 3; VteT)
p=1
and (28), 1(44) imply
d™a, 2 d"a;! g
(29) —a————”fl(a,a“) a (v=1,2, 3; VteT),
whence
3 m n ,—1 3 3 m -1 m -1
 (30) Zda, dav=2 Z(aa)da" d"a,

Zoam X T s e T X T
(VteT). On the other hand, (28), 1(44) imply

da, 2 d"a;’ :
(31) I —"E‘.l(ava,,)—d?— =1, 2, 3;VteT)
whence
3 dmav—l .dllav 3 3 dmav—l dlla;l
(32) I e o F E @) e X g

(VteT). Now (32) may obviously be written in the form

3 dma—l d"a 3 3 dma-l dna—l

33 _— Y = —_— -

®3) o ok Ee e e
(VteT) and a formal change of pu and v with v and u respectively in the
right-hand side of (33) implies :
3 dma—l dna 3
4 ~ > —t
(34) I xge = E O @e) 40

(VteT). Now (30), (34).

d"a; ! ey 1
dar"
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Pr 13. If the functions (2) are infinitely many times differentiable, then 1(5) and
1(44) imply :
3 d"a, d"a;!
(35) = =5 = T

v=1

n=0, 1, 2,...; VteT). _
Sch4. The cases m=n=0, n=0, n=1, and m=1, n=0 in Pr12 and Pr13
coincide with (12) and (13) respectively; hence in these cases the condition 1(44) is

superfluous.
Df2. The derivative

(36) E= d—“;’ (VteT)

of the instantaneous angular velocity @ of the reper (10) is called the
instantaneous angular acceleration (or briefly angular accelera-
tion) of (10). '

Pr 14. (10), (36) imply
> VteT).

_ 1 2
37 t=5 T &' xgs
Dm. (9), Pr13 with n=1.
Pr15. (10), (36) imply
3 2,—1
(38) g= % = a,x 4 d“:; VteT).
Dm. (14), Pr13 with n=1.
Pr16. (37) implies
. 3 2
39) z=% za, ‘fh‘;' (VteT).
iff the reper (10) is orthonormal.
Dm. 1Df3, [4, Pr94].
Pr17. (10), (9), (36) imply
(40) %:Exav+a’)x(a’)xav) “(v=1, 2, 3; VteT).
Dm. (4).
Pri8. (10), (9), (36) imply
d%a;?! '
(41) dt; =txa;'+ox(@xazt) (v=1,2 3;VteT)

Dm. (15).
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Pr19. If £, and &, denote the instantaneous angular accelerations of the repers
1(45) and 1 (51) respectively, then

(42) E,=8, (VteT)

iff 1(18).
Dm. Pril, Df2.

SchS. Similar to Sch3 with £ instead of @.
Pr20. (1), (2),

43) a:T—>V,
44) r:T-V,
2(102), 2(19), (9) imply
(45) l%(r——a)=a‘)x(r—-a) (VteT).

Dm. 2(102) implies: the function (3) defined by (9) exists and satisfies (4)
(2Sgn 8, 2Df 10, 2 Df 1 bis, Pr2). On the other hand, 2(19) implies 2(17) (2 Sgn 4).
Besides, 2(21) holds [4, Pr88]. Now 2(21), 2(17), (4) imply

(46) —(r—a)= % (r—a)a; ')

( VteT), i.e. (45).
Pr21. 2(102), (44), (9), (45) imply 2(19)

Dm. 2(102) implies: the function (3) defined by (9) exists and satisfies (15)
(2Sgn8, 2Df10, 2Df1bis, Pr5). On the other hand, (45) and (15) imply

—-l

@) 4 r-a)art)= (Le—a)art +e—a ™

(d
=dx(r—a).a;'+(r—a).0oxa;*’ =0
(v=1, 2, 3; VteT), i.e. 2(19), (2Sgn4).

Pr22. 2(102), (44), (9) imply: (45) is a necessary and sufficient condition for
2(19). )
Dm. Pr20, Pr2l.

Sch6. The following proposiiion manifests that there exists exactly one
function (3) with the property described by Pr22.

Pr23. 2(102) implies: if
(48) Q:T->V
and (44), 2(19) imply
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d
(49) d—(r—a)=Qx(r—a) (VteT),
then 3
(50) Q=a (VteT).
Dm. The definitional property (49) of (48) implies
(51). ddat"=Q><a, (v=1,2, 3; VteT)

(2Pr5). Now 2(102), 2Df1bis, 2Sgn 8, 2Df 10 imply 1(5), 1(44), and the latter
imply that the system of vector equations (51) has exactly one solution Q [4,
Pr103]. Then Pr2 implies (50).

Df3. The function (3) defined by (9) is called the instantaneous
angular velocity (or brieflyangular velocity) of the system of reference
2(102).

Sch7. As already mentioned in Sch 1, the existence of the instantaneous
angular velocity has been discovered by Euler. That is why Pr 22 is usually called
Euler’s theorem of instantaneous angular velocity. This
denomination is, in a sense, disputable. In the first place, the root of the matter lies
maybe deeper: in Pr1 and Pr2 rather than in Pr22 itself. In the second place,
Euler’s way to introduce the instantaneous angular velocity in rigid body
kinematics is essentially different from the manner it has been defined here. In
Euler’s version intuitive geometric-kinematical considerations have been used on
a large scale instead of strict mathematical definitions as those introduced here,
and one is at a loss where namely did Euler’s center of gravity lie. So, for instance,
Euler has never used properly affine systems of reference, whence he has not had
the oportunity to establish the importance (necessity!) of the property rigidity
for the existence of instantaneous angular velocities (Pr 1). At any rate, the whole
of the exposition in this paragraph is organically connected with Euler’s
discovery, and any of the above propositions may be justly attached to his name.

Sch8. Similarly to the remark of 2Sch 15 it should be noted that —as an
observant eye has certainly established — the definition of rigid system of
reference 2(102) to which the instantaneous angular velocity (9) is attached by
virtue of Df3 has not been used in the latter in its full range: as in the definition
2Df10 of the notionrigidity of a moving T-system of reference, the origin a of
o is neglected in the definition of the angular velocity @ of a. In other words, both
definitions are concerned with the axis vectors a, (v=1, 2 3) of a only and are
entirely indifferent with respect to a. Naturally, the same remark holds for the
instantaneous angular acceleration & of a as well, defined immediately below,
because of its relation (36) with @.

Df 4. The tunction defined by (36) is called theinstantaneous angular
acceleration (orbrieflyangular acceleration) of the system of reference
1(102).

Pr24. (1), (2), (43), (44), 2(102), 2(19), (9), (36) imply
2
(52) d—%;(r—a):éx(r-—a)+d)x(a')x(r—a)) (VteT).
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Dm. Pr20.

Sch9. By virtue of Pr 11, the notion of instantaneous angular velocity may be
transferred from the rigid systems of reference onto the equivalence classes in A,
(generated by the equivalence relation ~ in A, defined by 2 Sgn 6) these systems
define, i.e. on the rigid bodies. This remark gives rise to the following definitions
and propositions.

Df5. If 3(8), 3(1), 2(102)-with (1), (2), (43), and (9), then @ is called the
instantaneous angular velocity (or briefly the angular velocity)
of m.

Df6. If 3(8), 3(1), 2(102) with (1), (2), (43), and (9), (37), then £ is called the -
instantaneous angular acceleration (or briefly the angular
acceleration) of m.

" Pr25. 3(8), 2(102), 3(1),.(9), 2(18) imply: a necessary and sufficient condition
Jor 3(3) is (45).

Dm. 3Sgn3, Pr22.

Sch10. All considerations in this paragraph are carried out under the
hypothesis that the stage of events is the real standard vector space V. Now the
question quite. naturally arises whether they admit a complex extension, i.e.
whether all, or a part of them, remain valid if the complex standard vector space
V. over the field C of all complex numbers is substituted for V. The answer is a
categorical no. The reasons for this answer are very simple and they are analyzed
here.

Pr26. If
(53) T <R, _
(59) a,:T-V, v=1, 2, 3),
(10), then in the general case )
da, da, .. .
(55) a"7+av—a-¢0 (u, v=1, 2, 3; VteT).
Dm. (10), 1Sgn5, 1Df6 imply 1(44), i.e. (8). On the other hand
da da
6 —tgq —q — = .
(56) at a,=a, 2t (n, v=1, 2 3; VteT)

[4, Ax 8] where the vinculum in the right-hand side of (56) denotes the conjugate
value of the scalar product. Now, in the general case

. da da '
57 hatad ) hatad”} - .
(57) a3 * g (u v=1, 2, 3; VteT)

and (8), (56), (57) imply (55).
Pr27. (53), (54), (10).
(58) @ :T->V,
imply : the system of vector equations (4) is inconsistent.
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D m. By virtue of [4, Pr 100] the relations (5) are necessary conditions for the
consistency of (4). Now Pr26.

Sch 11. Pr27 explains the negative answer of the question put in Sch 10: if
1(3) is a rigid reper in V, it does not possess an instantaneous angular velocity
(58) in the general case. Indeed, the definitional condition of (58) are the relations
(4); according to Pr 27, however, there does not exist a function (58) satisfying (4).

Sch 12. An immediate corollary from the conclusion of Sch 11 is the inference
that any of the V. -analogues of the definitions and' propositions in the present
paragraph are, simply and purely, meaningless. This does not mean that there
does not exist rigid body kinematics in V. As in the case of the C-analysis in
comparison with the R-analysis, however, denuded of angular velocity with its
fundamental property (45), the C-rigid body kinematics is out and away scantier
than the R-one. Dura lex, sed lex : worthy of reéret though this conclusion is, it is a
mathematical nuda veritas one is compelled to become reconciled with.
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