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Estimate for Norm of Solutions of Nonautonomous
Equations in Hilbert Space
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A linear nonautonomous equation in Hilbert space is considered. The estimate for a norm of
solutions is obtained, by the new inequality for operator-valued function. The estimate gives stability
conditiosx;:d The possible application to fourth-order parabolic systems and integral-differential systems
is discussed.

1. Introduction

Let H be a Hilbert space with inner product (-, -), norm ||-||. And let S be a
linear normal operator in H: S*S=SS*. Consider the equation

(1.1) X=A(t)x, (- —E%, t=0),

where A(t) is a linear variable operator in H with domain D(A(t)); o(A) denotes
the spectrum of an operator 4. Assume there is a map T'(t, p) from ¢ (S) x R, into
the set B(H) of all bounded linear operators on H, such that

(1.2) A®h= | T, pdE,h and T(t, pE,=E,T(, )
a (S)

for all uea(S) and heD(A(?)),

where E, is the spectral function of S, and the integral strongly converges.

Example 1. Consider the problem

(1.3) ti=b, () A2u+b, (t) Au+b, (t)u in Q,

Au(x, t)=u(x, t)=0, on 0Q, t=0,

where Q is some domain in Euclidean space with a smooth boundary dQ, A is the
Laplacian, b, (¢) (k=1, n) are nx n-matrices.
Let, H=L2*(Q; R"), S=A, D(S)={he H :Ahe H, h|,n=0}, then we can write (1.3)
in the form (1.1), (1.2) with

T(t, w=b,(t) u>+b, (t) p+ by (1).
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Example 2. Consider the problem
(1.4) i (x, )=Au+ [ G(t, x—s)u(s, t)ds in Q
Q

u=0 on 0Q,
where G(t, x) is a n x n-matrix V xeQ, t=0, with property | [ ||G(t, x—s)||>dxds
Qa

< o0, Q is the same as in example 1.
Denote the operator K (t) by

(K@®)hXx)= [ G(t, x—s)h(s)ds (he L*(Q, R")).
Q

We arrive at (1.1), (1.2), when H=L?*(Q, R"), S=A, T(t, p=p+K(t).

In this article we:shall obtain the estimate for solutions of (1.1), under (1.2)
and other conditions. The mentioned estimate gives the stability criterion. It is
well known that finding a Lyapunov function for the investigation of the stability
parabolic systems and integral-differential equations is usually difficult. Below we
shall obtain the stability criterion in terms of some inequality.

Our results make corresponding well-known results (see [1, Ch.7; 2] and
references given therein) more precise in the case (1.2).

Denote by C, the Hilbert-Schmidt’s ideal of operators in H.

The following estimate plays a significant role hereafter

(k1) 3/2
for each BeC, [3, Ch2 and Ch.4] (see also [4, 5]). Here and below

(15 lesp(BOI<HB, ) = expla(B)M] T ()t (>0)
k=0

(1.6) a(B)=sup Re s (B), v(B)=((IBl,)*— ‘2 |4 (B)I? )2,
k=1

|B|, — Hilbert-Schmidt’s norm of B; A, (B), 1,(B),... are eigenvalues of B with
calculation of their multiplicity, n=n(B) the dimension of B.
Inequalities

1.7 v(B)< /0.5 |B—B*|,
and
v*(B)<(|Bl,)*—|Trace B?|

are valid (see [3]). If BeC, is a normal operator, then v(B)=0. Surely,
v(Be®®)=v(B) for any real 6.

2. Preliminaries

2.1. General estimate

Let X be Banach space with norm |-||. Suppose 4, is a generator of a
strongly continuous semigroup exp(A4,t) in X. Let also B(t) be a variable linear
operator in X, satisfying 3
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t

1) [lexpldot—9B@lyds<o(t—7) (<7, t<T)

T

for a certain positive number T<oo and a nonnegative continuous function ¢
with property ¢ (0)=0. Denote

2:2) a=sup {|leto'| :0<t<T}.
Following F. Browder’s terminology [1, p.55] a continuous solution
x :[0, T]— D(A(t)) of the integral equation .
t
23) u(t)=eto'u(0)+ [ e~ B(s)u(s)ds
[}

is a solution of (1.1), as far as A(t)=A,+B(?). _
By the contraction mapping theorem (2.3) has unique solution with every
u (0) e D(A(0)).
We have from (2.3)

lu@l.<alu©l.+e¢@) sup ),

0<s<T
Thus, the condition ¢(T)<1 implies
a
2.4 u@®l, < ——=u@l, O<t<TD).
24 lu@I 1_(p(.l..)ll O, ( T)

2.2. Estimate for an integral with respect to a spectral function
Everywhere in this subsection the domain of the integration is o (S).

Lemma 1. Let S be a normal operator in H with the spectral function E,, and let
K(u) be a bounded operator-valued function defined on o (S), such that the integral
K, = [K(u)dE,, converges in the operator norm. If K(u) E,=E, K(p) (1€ 0 S)), and

Co=| |K(w)l>*d(E, h, h)<oo.
Then |Koh||?<C,.
Proof. We have
||Koh||2=(_\'K(u)dE,h,_ _[K(}.)dElh) (he H).
Since K(u) and E, commute, we can write

1Ko hll>=[f(K* (}) K(u)dE, h, dE, h)
= [(K*(A) K(2)dE, h, h).

From here we arrive to the inequality
IKohl2< [ IK(A)I?(AE, b, h),
which proves the result.
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2.3. Representation of solutions

Consider the ordinary equation

(2.5) y=T (@ py (uea(S), t=0)
where T (¢, u) is an operator-valued function of ue o (S) and te[0, T]. Denote by
V(u, t) Cauchy operator of (2.5) Le. V(u, t) Y(0)=y(t) for a solution y of (2.5).
In this subsection we assume the existence of a unique solution of (2.5) with
any initial condition for each uea(S).

Lemma 2. Suppose T (t, p) maps o (S) x R, into B(H) and commutes with E,,. If

(2.6) I §f T WV dE, x|l <o
o (S)
Jor given x,€ D(A(0)) and all te[0, T),thenthe following equality is valid:
2.7) x(t)= [ V(u t)dE,x(0)
a (S)

Jor any solution x(t) of (1.1) with x(0)=x,.
Proof. By definition of Cauchy operator

SV 0=T@ WV o

We have

& | T WV 94Ex
de a (S)
differentiating both sides of (2.7) and taking into account (2.7).
On the other hand,
ADx()= [ T ©dE, | V(u, t)dE, x,
o (S) a (S)

= _("S)T(t, WV )dE, x,

i.e. (2.7) actually represents a solution of (1.1) Q.E.D.
Since

S IK@)I*d(E, b, Wy<sup {IK@)I?:pea(S)} A2
Lemmas 1 and 2 give
Corollary 1. Suppose under hypothesis of Lemma2 |V (u, t)|| <¢,(t), for all
neao(S) and =0, where @, is a positive function. Then ||x(t)|| < @ (t) x|l (£=0).

2.3. Estimate for solution of ordinary equation
Consider the following equation in H:

(2.8) X=Tox+T,(t)x t=0),
where T, doesn’t depend on t and || T(t)| <q for all t=>0.
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Lemma 3. Let T,eU,, besides a(T,)<0. Assume

"ol H(To)

k=qk2°| (To)|,+1Jk <l.  (no=n(T,)).

Then a solution of (2.8) satisfies the following estimate:

(29) X0 <ao IxOI 1-K)~!  (£=0).
Here ay,= sup p(T,, t),
>0 " e

P(To’ t) =¢exXp [a(To)t] kfo Uk(To)(k!);;/z (t>0)

Proof. We have |lexp [x(T,)t]ll <p(T,, t) by (1.5). Hence, |lexp [« (T,)t]ll <a,
(t=0). It is easy to see

(j;lléxp (To@—s] T, dssq]?P(To, t)det=k.
o
‘Now, (2.4) gives (2.9). Q.E.D.

3. Main results

Suppose
(3.1 Tt W=ToW+T, (¢ n),

where T, (u) is a Hilbert-Schmidt operator for all uea(S),
(3.2 E,ToW=ToWE, (neo(S)),

T, maps o(S)x R, into B(H) and satisfies the inequality
(3.3) IT; ¢t, Wl <q(u) for all uea(S), t=>0,

where g(p) is a nonnegative functlon on R, . Denote v, =v(T, (1)), a, = (T, (1)),
n(p)=n(To 1))

Theorem 1. Let conditions (1.2), (3.1 —3.3) be satisfied. Suppose T,(n)eC,,
o, <a,<0 and

T ko<t
(3.4 . k) = q(w) Z W\ o<

for any uea(S). Then the domain D(A(t)) of A(t) is constant:

3.5) D(A(t)) = D(A,), where Aq= [ To(u)dE,.
a (S)
Moreover, there exists a unique solution x(t) of (1.1) with any initial condition
x(0)=x,€ D(A,) and the following estimate is valid:
(3.6) Ix@)l <bo (1—ko) 2 lixoll  (¢=0).

Here
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bo=sup sup HTo(u), 9.

t>0 pe a(S)

Proof. According to (1.5)

lexp(To DI <P(To(), 1)  (€=0).

At first, we prove that actually b, <oo. In fact, let by=00 and let R be a
sufficiently large number. Then there is the positive number z such that
(T, (2), ©)> R for some t=>0. Since p(T, (), t) is a continuous function with respect
to t, we can write '

k(z)= })p(T0 (2), de>1.

This contradicts (3.4), i.e. by < oo.
Now, we prove relation (3.5). It is clear,

1T @l=I I exp(To (W) dt|| < I llexp (T (w)1) || de.

Thus,
L n(p)—1 vzl
ITG @< [ ATo@), hdt= = ——=F—0o0.
o m=0 \/m! Iaul"'
Hence, .
1Ty WINTe W<k, <l
Since

ITogll=lgh I Ta* @I~  (geH)
we come to the inequality || T, (u)gll = || T, (¢, p)gll for any t=0, uea(S) From here
it follows
IT (. u)GII<2IITo(#)gII (geH, pea(S), t=0).

Now, it is simple to show that this inequality implies the following inequality :
lA(t)gll <2 ||Aogll for any geD(A4,). Thus (3.5) is proved.

The existence of solutions one can prove by arguments of Sec. 2.1. It remains
to prove the estimate (3.6). Consider (2.5). By Lemma3

Iy, Ol <a,d—k,) "Iy, @Ol  (=0),

where y, is a solution of (2.5), a,=sup {p(To(p), t):t=0}<b,. Corollary 1 of
Lemmai gives the required estlmate Q.E.D
Denote
np)—1 o m
P, p)=qu) T —E=a"07m7L
m=0 \/ m!

Theorem 2. Let conditions (1.2), (3.1 —3.3) be satisfied and let T (1) be a finite
dimension operator for all pueo(S). Assume

3.7) W(To@W)+r(<Ag<0  (nea(S)),
where r(y) is the extreme right (unique positive and simple) root of the polynomlal
A"® — P(A, p). Then the following inequality is valid:
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Ix(®)l < Cexp (Ao 1)l x(0)|l (C=const, t=0)
for any solution x(t) of (1.1) with x(0)=x,€D(A,).
Proof. At first we assume A,<O0. Then r(y)<|x,|. We have

k ( nU;;l vz nu;;l U"
= —_—< ——
w =4 Ry a(u) Lo AR

We multiply this relation by r". We have r"k, < P(r, p). The equality "= P(r, u)
implies the inequality k,<1. Theorem 1 gives the estimate (3.6). The substitution
x(t)=exp (—et)y(t) into (1 1) gives under some £>0:

Y=ey+A@t)y. If e+a,+r,<0 (uea(S)),
then according to the estimate proved above,
Iyl <a llyO)l. (£=0)
From here the required estimate follows.
Now, let A,=>0. We substitute x(t)=exp [(Ao+s)t] z(t) into (1.1). Under

sufficiently large >0, we can apply the estimate which is proved above. Q.E.D.
Denote by I the identity matrix in R".

Corollary 1. Let under conditions (1.2), (3.1—3.3) {, = To(u)+r(u)I be a
Harvitz’s matrix (i.e. Re ¢((,)<0) for all peas(S). Then (1.1) is stable.

Remark 1. Theorem?2 is exact. In particular, (3.7) is the necessary stability
condition, if T,(u) is a normal matrix for all pea(S). In fact in this case
v (T, (1)) =0 (see above) and r (u) =q(y). Selecting T, (4, t) = q I it is simple to show
that (3.4) is actually the necessary stability condition.

4. Examples
In this section everywhere pea(S)

4.1. Fourth-order parabolic system
Consider the problem (1.3) assuming b, (t)=box + b1 (t), Where by is independ
on t, and :
b, @®)llg* <g<c0  (¢=0).
We may take
2 2
T,(t, W= Z by (@O, To(w) = T borp* E(dp).
k=0 k=0
Hence,
1Ty WI<a, 1 +q,lul+g0 = a(k).
In this case S=A=S*, i.e. Ima(S)=0. By (1.7)
v(To(W)Sv, (1) = PPy +lple, +co (nET(S)),
where ¢, = JO S|box—b¥:|,. We can write
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I {17) Py
P, W<P(h W= = 220 (2>0)
k=1 \/k!
(1.3) is stable by Corollary 1 of Theorem 2 if T, (u)+r, (@I is a Hurvitz’s matrix
for all uea(S). Here r,(u) is the extreme right zero of A"—P, (4, p).
In particular, let n=2 and let To(u)=(ti (1) (, k=1, 2) be a real matrix. In
this case we have
v, (W)= /05t12—121], 7 (W) =a/2+ \/q*/4+qv, (1)
(@=a@), tix="1tu ()
In particular, if
ty1+ta+2r, <0, (81 +7 N2z +7y)>t12t2y,

(ry =r, () for all u<a(S), then matrix T, (1) +7,(u)! is a Hurvitz’s one for all
puea(S). Consequently, the equation (1.3) is stable.

4.2. Integral-differential system
Consider the problem (1.4), assuming that
G(t, x)=Go(x)+G,(t, x),
where G, doesn’t depend on ¢, and also
(f SIG.(t x—9)lgrdxds)'/>*<g<o0  (¢20).
Q Q

We may apply Theorem1 with H=L?(Q, R") and S, D(S) are same as at
Example 1,

To(W=Edp)u+K,), T (s 1)= K, (¢),
where
(Ko h)t, x)= [ Go(x—s)h(s)ds
[¢]

(K, h)t, x)= [ G, (t, x—s)h(s)ds.
Q

Since,. Im o (S)=0 we have according to (1.7)
o(To(W)<v,
= JO05|Ko—K&l, =(f §11Go(x—3s)—G¥(s—x)|l & hdxds)'/2.
Q Q

It is clear a(To(W)=pu+a(Ky), 1T, (1, DI<q (¢=0). If a(S)+a(K,)<0 and
2

q x —<1,
k=1l (S)+a(Kok+! k!
then (1.4) is stable by Theorem 1. .

Remark 2. IfQis a canonical domain (sphere, parallelepiped, cylinder, etc.)
the quantity a(S)=a(A) is well known. For example, a(A)= —n> = B—a)’ if
. k=11 _. J
Q is the parallelepiped {a;<x;<b;, j=1, m}. If Q is not a canonical domain, then

we may use the inequality a (A)<a(A,) where A, is the Laplacian on a canonical
domain Q, o Q.
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