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On the General Mountain Pass Principle
of Ghoussoub-Preiss

N. K. Ribarska™, Ts. Y. Tsachev+’+, M. I. Krastanov***

Presented by P. Kenderov

We present here a version of the general mountain pass principle of Ghoussoub-Preiss for locally
Lipschitz functions. Our theorem is a generalization of a result of Chang for the case when “the
;:eparatmg mountain range has zero altitude”. The proof is simplified by means of a deformation
emma.

1. Introduction

Since A. Ambrosetti and P. H. Rabinowitz published in 1973 their
famous variational pnnmple known as “mountain pass lemma” (cf. [AR]), it has
been successfully applied in different mathematical fields. For the time being
numerous generalizations of this result are known. In 1981 K. C. Chang [Ch]
extended the classical theorem (concerning C! functions) to locally Lipschitz
functions. In the present paper we generalize his result.

The usual way of proving “the mountain pass lemma” is based on a
“deformation lemma” and some kind of compactness condition imposed on the
considered function. To prove existence of deformations one needs an equivalent
of || f'(x)|l x» (Where X is a Banach space, X* is its conjugate and fis C*) for locally
Lipschitz functions:

Definition 1. Let X be a Banach space, S = X be a neighbourhood of xe X,
f:S = R be Lipschitz continuous and f°(x, h) be the Clarke derivative of fat x in
direction h€é X. The number

inf {f° (x; h) (leX Ihllx=1}
is called steepness of f at x and is denoted by stf(x).
Remark 1. In [Ch] the respective notion is

A(x):=min {||x*| x| x*€3f(x)} (p.113),

‘where df(x) is the Clarke gradient of f at x. In fact A(x)=0 iff stf(x)=0 and
A(x)= —stf(x) otherwise.

In contrast to Chang we prove a version of the deformation lemma for locally
tl:.lpschltz functions which follows exactly the one proved by Willem in [W] for C!
unctions.
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We shall denote .
S,={xeX|dist(x, S)<a},

fe={xeX|f(x)=c}

where f is a function on a Banach space X, S is a subset of X and a, ¢ are real
numbers. :

Lemma 1.(deformation lemma). Let X be a Banach space, f: X — R be
locally Lipschitz, S = X and ceR. Let ¢ and 6 be positive reals such that for every y
in an open neighbourhood Q of f~!([c—¢&, c+¢&))NS; we have

stf(y) < —26/5.

Then there exists ne C([0, 1]1x X, X) satisfying the following properties:
@i 70, x)=x for every xeX; :
(ii) n(t, x)=x for every xe X\Q and for every te[0, 1];
(i) n(1, NS =T NS,
(iv) n(t,.) is a homeomorphism of X for every te[0, 1];
(v) dist(x, n(1, x))<0 for every xeX.

Next we introduce the respective Palais-Smale conditions for loeally
Lipschitz functions.

Definition 2. Let X be a Banach space and f: X —R be locally Lipschitz. The
real number c is said to be a critical value of f iff there exists x € X (called critical
point of f) such-that c=f(x) and 0edf(x).

Definition 3. (compare with [GP], [W]) Let X be a Banach space, ceR and
f:X = R be locally Lipschitz. We say that f satisfies.
(i) the condition (PS), if whenever a sequence {x,}x, is such that f(x,)y~e — ¢
and liminfstf(x,)=0, than c is a critical value of f;
(ii) the Palais-Smale condition (PS) if each sequence {x,}s=1 such that
{If(x,)]}&, is bounded and liminfstf(x,)=0 has a convergent subsequence;
(iii) the Weak Palais-Smale condition (WPS) if each bounded sequence {x,}i-4
such that {|f(x,)|}2, is bounded and liminfstf(x,)=0 has a convergent
subsequence;

Remark 2. Let X be a Banach space, f: X — R be locally Lipschitz and
{x,}2 1 has a cluster point x. Let c=f(x) and lim inf st f(x,) = 0. Then ¢ is a critical
“value of f by the upper semicontinuity of the Clarke derivative (see proposi-
tion2.1.1 on p.32 in [C]). This means that (PS) implies (PS),. The implication
(PS) — (WPS) is obvious.

In the classical mountain pass theorem the critical value occurs because there
are two “low points on either side of a mountain range which has positive
altitute”, so that between these two points there must be a “mountain pass”. The
fact that “the separating mountain range has positive altitude” is crucial for its
proof. In [GP] N. Ghoussoub and D. Preiss established a general mountain
pass principle for smooth functions (Gateaux — differentiable with strong to
weak* continuous derivative) which includes the case when “the altitude” in
question is equal to zero. '

Following [GP] we introduce some necessary notations: Let X be a Banach
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space, F be a closed subset of X ; u, v be two distinct points in X and f: X — R be
locally Lipschitz. We set

I :={geC(0, 1], X)|g(0)=u, g(1)=v},
oF, f) :=inf {max {f(g®))|g(®)€F, te[0, 1]}|geT}.

Definition 4. It is said that F separates u and v iff u,v belong to disjoint
components of X\F.

Theorem 1. Let X be a Banach space and f:X — R be locally Lipschitz
function. Let F be a closed subset of X and u, v be two points from X separated by F.
Assume c(F, f)=cX, f)=c. Then:
(i) if f verifies (PS), then c is a critical value for f;
(i) if f verifies (PS) or if F is bounded and f verifies (WPS) then there exists a critical
point in F with critical value c*. '

The following is now immediate.

Corollary 1. Let X be a Banach space, f : X — R be locally Lipschitz, u,v be
two distinct points in X and re(0, |lu—vly) be a real such that

:=inf {f(x)| |x—ullxy=r} Zmax {f(u), f(v)} :=a.
Let c=c(X, f).
(i) if f verifies (PS), then c is a critical value of f;
(ii) if f verifies (WPS) and c=a then there exists a critical point x, satisfying
lixo—ullx=r. '

Corollary 1 differs from the respective result of K. C. Chang (Theorem 3 4
on p.118 in [Ch]) by lack of reflexivity assumption on X, a weaker Palais-Smale
condition' and by considering the case when “the separating mountain range may
have zero altitude”. It also gives some information about the location of the
critical points (in (ii)). :

The proof of Theorem1 uses the idea of Ghoussoub and Preiss “for
perturbation of the considered function along F”, but it is simplified by using the
deformation lemma and because “the perturbation” is locally Lipschitz.

2. Proofs

2.1. Proof of deformation lemma

Let x be a point of Q. Then from the definition of the Clarke derivative we
obtain an open neighbourhood U, of x, a vector h, € X of norm one and a positive

number «,>0 such that
fo+th)—f0) _ _2e
t o

whenever ye U, and t€(0, a,). Now {U, }. o is an open cover of the paracompact
space Q (as Q is a subspace of the complete metric space (X, ||.||)). Therefore there
exists an open cover {V;}s 5 of Q with V, of diameter less than one, which is a
locally finite refinement of {U, }.o- If V; S Uy, let hy be h,, x, be x, oy be a, and
ps(z)=dist(z, X\V,;). We define’ a locally Lipschitz function h:Q — X by

* In private communication R. Deville informed us that Theorem 1 generalized the main result of
Ghoussoub and Preiss [GP].
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h z _L(x_)

O Th@"
The so constructed mapping h has the following “decreasing property”:
Claim 1. For every xeQ there exists t,>0 such that

S+ th)—f(x) _ _2e
t o

whenever te(0, t,).

Proof of claim 1.
Let xeQ be arbitrary. Then er,, i=1, 2,...1 k. We denote

pi= iﬂg(l—)-e(o 1] and h;= h,,‘, i=1, 2,..., k. Thus h(x)= X p;h; is a convex
Ps i=1

combmatlon of h, i=1,2,..., k. If
k
t,=sup{to>0|x+t X pheVp, for each t=<ty, j=1+k—1, to<a,,i=1+k},
i=j+1
then for every te(0, t,) we have

k
fx+th(x))—f(x)=f(x+ t 2‘ Pih)—f(x)

= z (flx+t z pih)—f(x+t 2 p:hy)

ji=1 i=j i=j+1

Z(f(x+t E pih+tp;h)—f(x+t Z pihy).
i=1 i=j+1 i=j+1

Since t<t,, the vector x+t Z p; h; belongs to V, and from O<ppst<t,
i=j+1
=< g, We obtain

k k
fx+t T ph+tpjh)—flx+t Z p; hy) < —2(e/d)tp;
i=j+1 i=j+1
for every j=1-+k. Hence ,
S(x+th(x))—f(x)< —2(g/o)t
for every te(0, ¢,) (t, is positive because V,j are finitely many open sets). g
Let U,, U, be two open subsets of X with
U,n0,=0, Uyof '(c—& c+e)nS,;, U, 2 X\Q

and ¥ :X — R be an arbitrary locally Lipschitz function for which ¥ (x)=1
whenever xe U,, ¥ (x)=0 if xeU, and 0=¥(x)=<1 for every xe X. We define a
locally Lipschitz mapping g : X — X by
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g(x)={ 2 49 if xeQ;

(L65]]
0 ’ if xeX\Q.
We can do it because h(x)=0 for some xeQ contradicts the “decreasing
property” of h.
Let us consider the Cauchy problem
2=4(2),
2(0)=x.

There exists a solution z(., x) of this problem which is defined on [0, c0). Let
n:[0, 1]xX — X be the mapping n(t, x)=2(6t, x). It is easy to verify the
conditions (i), (ii), (iv) stated in the deformation lemma.

If t=0 we have

lz(z, x)—x| = I g(z(z, x)dz| = I lg(z(z, x)lldr=t.

Therefore (v) holds true and z(t, x)€S; for every te[0, 5]. To conclude the
proof of the deformation lemma we need the following assertion:

Claim 2. If f° (z(t, x), g(z(t, x))) < a for every te[t,, t,], then f(z(t;, x)) —f(2(t1, X))
Sa(t,—t,) (here t, 20)

Proof of claim 2.
Let £>0 be an arbitrary positive number. It is clear that it will be done if we
prove that

fz(ty, X)N—f(aty, x)=(a+eNt2—t,)
We will proceed by transfinite induction on t,=t,. If ¢t,=t,, then
Sty x)—f(2ty, x)=0=(a+e)t,—t,).
Let ,
flz(t, x)—f(z(ty, x)=(a+e)t—t,)
~ for every te[t,, t,). A continuity argument shows that
[z, x)—f(z(ty, x)=(a+e)t,—ty).

Now f°(z(z,, x), g(z(t,, x))) <a+¢/2 yields the existence of a, >0 such that for
every te(t,, t,+a,) the following inequality holds:

feltyy x)+(E—1t,)g(z(ts, XN)—F (2t X)S(@+e/2)t—t,).

Since f'is locally Lipschitz continuous, there exists «, >0 and K >0 such that
1f(z(t, x)—f(z(tz, x)+(t—1t;)g(z(ts, X))
=K |\z(t, x)—z(t;, x)—(t—2;)g(z(t5, X))

for every te(t,, t,+a,). Therefore
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1zt X)) —f(2(t;, x)+(E—t2)g(2(2t;, X))

t—tz

A 0=20 X)_ e, )

=K
t—tz

and the last quantity tends to zero whenever t tends to t,. But for ‘every
te(t,, t,+0o,) we have .

e, =S aler, %) _ & flel D)1 ltas D=ttty X))
t—t, 2 t—t, )

Hence there exists a,>0 with

f(t, x))—f(z(t;, X))

t—tz

<a+e

for every te(ty, t,+a,). If we add the inequality for z(tz,'x), we obtain
S, x)—f(2(ty, x)=(a+eft—t,)

for every te[ty, t,+a;) w
Let us turn back to the proof of the deformation lemma. The “decreasing
property” of h yields

f(z+th(z))—f(2) p 2
t )

for every te(0, t;) or
fe+t9@)—f0) _ 2 Y@
: <=7 Tl ="

1A
*¥()

for every te(0, ¢t ). Now

fz+1tg()—f(2)
t

gf (z+tg(:» —f@)  |fe+1go)—S (z+19(2))|

t I

<K, K,.ly—zl

for every z in a neighbourhood of yeQ because f and g are locally Lipschitz.
Hence f°(y, 90))<O whenever yeQ. It is clear that f°(z, g(z))=0 whenever
ze X\Q. So f°(z, g(z))<O for every ze X and from claim2 we have f(z(t5, %)
—f(z(ty, X)) <0 if 0=<t, <t,. If there exists a real t, [0, 8] with f(z(ty, X)) < c—¢ for
some xef°*¢n S, then f(z(3, x))<c—e. This completes the proof.

Let us suppose that f(z(t, x))>c—é for some xef***N S and for every ¢ from
[0, 8]. Then (according to the decreasing property) f(z(t, X)) < c+& for every ¢ from,
[0, 5] and therefore z(t, x)ef ~! ([c—&, c+¢]) N S, for every t€[0, 5]. Then according
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to the definition of g we have W (z(t, x))=1 and g(z(t, x))=h(z(t, x))/ || A(z(t, x))|| for
every te[0, 8]. Therefore we have

f(Z(t, x) +_S . h(Z(t, x)))-f(z(t, X))< _28.

s )
for every se(0, t, ) ('b‘ecause 2(t, x)eQ) and
S(z(t, x)+s. g(2(2, x)))—1(2(t, x)) o —2e
s o ||h(z(z, x))

for every s€(0, ||h(z(t, x))|| . t.¢, x))- Since ||h(z(t, x))|| <1 as a convex combination of
normed vectors we have

. —2¢ 2¢
3G, N = 5
Thus we obtain )
£t D)+ glatt, N =1, X) __2
o

s

for every se(0, ||A(z(t, x))||.t.. x) and the same reasoning as above shows
FOAt, x), g(z(t, X)))< —2¢/6 for each te[0, ).
Then claim 2 implies
(20, x)—f(x)=(—2¢/5).6=—2¢
and therefore :
f(z(0, x))Sf(x)—2e=<c+e—2e=c—e
which contradicts the assumption. g4

2.2. Proof of theorem 1 '
Without loss of generality we can suppose that f=c on F. Let ¢>0 be a fixed

positive number. We set
b:=inf {f(x)|xeF}, a:=max {f(u), f(v)},
Y, (x) :=max {0, £?/4—¢/2.dist(F, x)}, xe X,
[.(x) :=f(x)+ Y. (x), xe X.
It is easy to check that .
X, f.)=c(F, f)=c+¢e*/4.

We denote this quantity by c,.
We claim that for every ¢>0 satisfying

£<(1/2)min {dist (u, F), dist(v, F)}

there exists a point :
x.€fc* (lc,—€%/6, c,+&*/6) N F,
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such that stf,(x,)= —e/2. Supposing the contrary, we apply the deformation
lemma for the following choice of S, f, c, &, 6 and Q respectively: F,;, £, c,, &2/12,
¢/3 and _

Q, :=int(f; * (lc,— /6, c,+&*/6) N F,).

So we obtain that there exists ne C([0, 1] x X, X) satisfying the following
properties:
(1) n(0, x)=x for every xeX;
@ii) n (e, x)=x2for every xeX\g and for every te[0, 1];
(iil) 1(L, f572 A Fy3) S f3 1% A Fags ;
@iv) n(t, .) is a homeomorphism of X for every t€[0, 1];
(v) dist(x, n(1, x))<e/3 for every xeX. :

Let us fix an element g, from the set I' such that max {f.@.®g()eF,;3,
te[0, 1]} <c,+£%/12, which is possible because N

C(F’ .f;)_S_c(F8/3’ f;)éC(X, f;)—_—'C(F, f;)’——C‘.
We set
h.(t) :=n(1, g.(®), t[0, 1}.

By the choice of ¢ we have u¢ Q,, v¢ Q, and therefore h eI follows from (ii).
ow

{9.()19. ()€ F3, telO, 11} Sf&*"2nFyp
and (iii) imply _ '
{h®)1g.()EF 3, te[0, 11} S fe™*2 A Fays.
The property (v) gives us
{h, ()| h,O)<F, te0, 11}
c {h,(t)|9.(®€Fy3, tel0, 1]}
and hence
c,=c(F, f,)<max {f,(h,(t):h,(t)eF, te[0, 1]}
<c,—&*/12
which is a contradiction.
Let us estimate f(x,): .
fx)=f.(x)— ¥, (x,)Sc,+&*/6=c+e*/4+£7/6
=c+5¢%/12.
S =1, (x)— Ve(x,) 2 c,—&*/6—&?/4=c—&?/6.
The both inequalities imply that
(*) fx,)—c.

=0
Since f,=f+,, using Proposition 2.3.3, [C, p.43], we get f2(x, W=f°(x, h)
+y2 (x, h), for every he X, ||h|| = 1. Hence stf(x) 2 stf, (x)+inf { —y2 (x, h) | | h]| =1}.
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But ¢, is a globally Lipschitz function with Lipschitz constant ¢/2. Therefore
|—y2(x, h)<¢/2, for every heX, ||h|=1, and so

stf(x)Zstf,(x,)—&22 —¢/2—e[2=—e.
In this way we obtain that
(+*) t lim inf stf(x,) =0

>0

and the theorem follows from the various Palais-Smale conditions, (*) and (*#).
The localization of the critical point in part (b) of the theorem is due to x, € F,, for
every £>0.

2.3. Proof of corollary 1 _
If ¢ > a there exist open balls B,, B, centered at u and v respectively so that

sup {f(x)|xe B, U B,}<c.

Denoting F=X\(B, U B,), we have c(F, f)=c and Theorem 1 appliés.
If c=a we denote F={xeX| |x—ul|=r}. Then we have

c=a§b§c(F, _f)éC(X, f)=C
and Theorem 1 applies again.
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