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Conditions known to be necessary for the contractibility of curves are investigated to see if they
are also necessary for the selectibility of these and other classes of curves.

0. Introduction

When investigating selectible continua and contractible curves one can
observe that these two classes of spaces are related to each other. And although
no internal characterization is known even now of continua to belong to either of
these classes, various conditions are considered in the literature which either
imply or are implied by the fact that a particular continuum belongs to one of
these two classes. Three of these conditions, (1.13), (1.14) and (1.5) in Theorem 1.9,
are of special importance; they are used by L. G. Oversteegen in the
characterization of contractible fans [32]. The aim of this paper is to verify if some
of them have an influence on the existence of a continuous selection for the
hyperspace of all subcontinua of a given fan or dendroid. In other words we try to
find conditions which are responsible not only for noncontractibility, but also for
nonselectibility of dendroids or of fans.

I am much obliged to T. J. Lee for calling Example 1.7 to my attention, and
for many fruitful suggestions during the preparation of this paper.

All spaces considered in the paper are metric continua, and all mappings are
assumed to be continuous. A curve means a one-dimensional continuum. Given
a continuum X, we denote by C(X) the hyperspace of all nonempty subcontinua
of X equipped with the Hausdorff metric. A continuous selection on C(X)
means a mapping ¢:C(X) — X such that o(4)e A for each AeC(X). If C(X)
admits a continuous selection, then X is said to be selectible.

A continuum X is said to be contractible provided there exists a
mapping H: X x [0, 1] - X (called a homotopy) such that for some point pe X
and for each point xe X we have H(x, 0)=x and H(x, 1)=p.

A property of a continuum X is said to be hereditary provided each
subcontinuum of X has this property. A continuum is said to be hereditarily
unicoherent if the intersection of each two its subcontinua is connected. A
hereditarily unicoherent and arcwise connected continuum is called- a
dendroid. It is known that each dendroid is a curve. If a dendroid is locally
connected, it is called a dendrite. The unique arc joining points a and b in a
dendroid is denoted by ab. A point of a dendroid X is called anend dpoin t of X
if it is an end point of each arc contained in X and containing it. If a dendroid has
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countably many end points, it is said to be countable. By aramification
point of a dendroid X we understand a point which is the centre of a simple
triod contained in X, i.e., a point pe X such that there are three arcs pa, pb and pc
in X, with the intersection of each two of them being just the singleton {p}. A
dendroid having exactly one ramification point is called a fan, and this point is
then called its top.

We use the symbols Li, Ls and Lim to denote the lower limit, the upper limit
and the topological limit of a sequence of sets. If two points p and q of either the

Euclidean plane or three-space are given, then pq denotes the straight line
segment with ends p and g. N means the set of all positive integers.

Recall that a continuum X is said to be uniformly arcwise
connected provided it is arcwise connected and for every positive number &
there is a numger ke N such that every arc contained in X can be divided into at
most k subarcs whose diameters do not exceed & (see [4], p.193; compare
also [23)). '

'{'he] following known result illustrates that the two classes of continua
considered, i.e. selectible continua and contractible curves, have some important
properties in common.

0.1. Theorem. If a continuum is either selectible or one-dimensional and
contractible, then
(0.2) it is a dendroid;
(0.3) it is a contintious image of the Cantor fan and thus it is uniformly arcwise
connected ;
(0.4) it is locally connected if and only if it is a dendrite.

Proof. Assume first that the continuum X under consideration is selectible.
S. B. Nadler and L. E. Ward showedin Lemma3 of [30], p.370, that X is a
dendroid. According to Proposition2 of [7], p.110, each selectible dendroid
satisfies condition (0.3). And (0.4) is stated as Corollary in [30], p.371.

Assume next that X is one-dimensional and contractible. Then (0.2) is just
Proposition 1 of [S], p. 73. Theorem 3 of [10], p. 94, states that every contractible
dendroid X is uniformly arcwise connected, which is known to be equivalent to
the existence of a mapping from the Cantor fan onto X (W. Kuperberg [23],
Theorem 3.5, p. 322); thus (0.3) is true. Finally note that (0.4) follows easily from
(0.2) and the definitions. Thus the proof is_complete.

On the other hand, the author’s Propositions 3 and 4 of [7], p. 110 and 111,
contain examples of noncontractible and selectible dendroids (even with some
extra properties). S. B. Nadler asked in his book ([29], (5.11), p.259) if every
contractible dendroid is selectible. The question has been solved in the negative by
T. Maéckowiak ([28], Example, p.321) who constructed a contractible and
nonselectible dendroid D by combining properties of two examples, viz. his own
Example 1 of [27], p. 548 and B. G. Graham’s example A of the Appendix in [20],
p. 89. See [8] for a discussion concerning some further properties of the dendroid D
and problems related to this topic. Nevertheless, the question is still open if we
require that the contractible dendroid has some additional properties, e. g. is a fan.
And though we know an internal characterization of contractible fans (cited here
as Theorem 1.9 below), interrelations between contractibility and selectibility for
these continua are not clear enough, and the results on this topic seem to be
rather far from being the final ones. Thus, the following question is open ([8],
Problem 7, p.28).

“0.5. Question. Does there exists a contractible and nonselectible fan?
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To see other differences between contractibility and selectibility for
dendroids, recall that selectibility is a hereditary property (see [7], p. 113), while
contractibility is not, even for countable plane fans, as it was indicated by
F. B. Jones in [22] (compare also S. T. Czuba’s [17]).

1. The conditions

Now we recall the three conditions which were used by L. G. Over-
steegen in [32] to characterize contractible fans.
A dendroid X is said to be of type N (between points p and q) provided there
existin X : two sequences of arcs p, p, and g, g, and points p; €4, 4,\{q,.4, } and
q.€p,P.\{Pn» P,}, such that the following conditions are satished:

(1.1) . pq=Limp,p,=Limgq,q,;
(1.2) ' p=Ilimp,=lim p,=lim p; ;
(1.3) q=limg,=limq,=limgqjy.

The above concept is due to L. G. Oversteegen ([31], p. 837) and is related
to B. G. Graham’s condition “contains a zigzag” (see [20], p. 78). Namely we say
that a dendroid X contains a zigzag provided there exist in X: an arc pq, a .
sequence of arcs p, g, and two sequences of points p; and g, situated in these arcs
in such a manner that p, <q, <p, <4, (where < denotes the natural order on p, g,
from p, to g,), for which the following conditions hold:

(1.4) - pq=Limp,q,;
1.5) : p=Ilimp,=limp;;
(1.6) - g=limg,=limg,.

It is evident that if a dendroid contains a zigzag, then it is of type N ([32],
p. 393) but not inversely, even for fans, as it can be seen from Example 2.7 in [9],
which is repeated here for the reader’s convenience.

1.7. Example. There is a countable plane fan which is of type N and contains
no zigzag.

Proof. Let v be the pole (i. e. the origin) of a polar coordinate system in the
Euclidean plane. For each neN define the following points in polar coordinates

(. @):
a=(1, 0), a,=(1, 27", p,=(1/3, (3/4) -2'7"),
4.=(2/3, 3/4)-21~"), r,=(2/3, 2'™").

X=0aU ) {082n— 1V T20—1P2a—1" P2a-142n-1 :NEN}
U {vrzaUraapzs :neN}.

Then X is a fan with top v. Putting p=Ilim p,=(1/3, 0) and g=lim g,=(2/3,0)
we see that X is of type N between p and g, while it contains no zigzag.

A point p of a dendroid X is called a Q-point of X provided there exists a
sequence of points p, of X converging to p such that Ls pp, # {p} and, if for each
neN the arc p,q, 1s irreducible between p, and the continuum Ls pp,, then the
sequence of points g, converges also to p. This concept is due to R. B.Bennett
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[3] and it was intensively exploited in investigations of the contractibility of fans,
e.fg. inQ [20] and [32]. The following result is related to selectibility and the concept
of a Q-point.

1.8. Proposition. Let a dendroid X contain a Q-point p and let K=Lspp,,
where {p,} is the sequence of points of X mentioned in the definition of the Q-point.
Then for every continuous selection o: C(X)— X we have ¢(K)=p.

Proof. Indeed, the above proposition is a stronger version of the Corollary
on p. 118 of [7], which has the same conclusion under an additional assumption
that lim diam pq, =0, where g, has the same meaning as in the definition of the
Q-point p. Note that pg, = K. If K is locally connected, then it is a dendrite,
whence the assumption is satisfied, and so the conclusion holds. If not, the
continuum K u | ) {pp,; neN} is not uniformly arcwise connected, whence it
follows that the whole of X also is not uniformly arcwise connected, contrary to
condition (0.3) of TheoremO.1.

The third concept we recall here is pairwise smoothness; it was formulated by
B. G. Graham in [20], p. 78, and was shown to be an important tool in studies of
the contractibility of fans in [20] and L. G. Oversteegen’s [32]. Let two
sequences of points r: and r? of a dendroid X be given, both converging to a
common limit point r. We say that the former sequence dominates the latter
one provided that whenever there is a point s in X and a sequence of points s} of
X converging to s with the property that the arcs r, s, converge to the arc rs, then
it follows that there also exists a sequence of points s2 of X converging to s such
that the arcs r2 s2 converge to rs. A dendroid X is said to be pairwise smooth
provided that whenever a pair of sequences converge to a common limit point,
then one of the pairs dominates the other.

The following internal characterization of contractibility of fans is due to
L. G. Oversteegen (see [32], Theorem 3.4, p.393; cf. B. G. Graham’s [20],
Theorems 2.1, 2.3, 2.4 and 3.10, p.81, 82 and 88; compare also Theorem (2.7)
below).

19. Theorem (L. G. Oversteegen). For every fan X the following
conditions are equivalent: '
(1.10) X is contractible;

(1.11) X is not of type N, contains no Q-point and is pairwise smooth;
(1.12). X contains no zigzag, contains no Q-point and is pairwise smooth.

The above characterization describes three possible reasons for the non-
contractibility of a fan:

(1.13) being of type N (in particular containing a zigzag),
(1.14) containing a Q-point, and
(1.15) being not pairwise smooth.

Let us note that no one of the above three conditions (1.13), (1.14) and (1.15)

implies any of the other two. Namely a fan of type N without any Q-point that is
pairwise smooth is shown by B. G. Graham in [20], Fig. S (also Fig.6), p.92. A
fan which is not pairwise smooth but contains no Q-point and is not of type N is
_pictured also by B. G. Graham in [20], Fig. 3 (and Fig.4), p.91. And finally the
third needed example of a fan which contains a Q-point, is not of type N and is
pairwise smooth is constructed as Example 2.16 in [9]. Since this example is used
for further purposes in this paper we recall it beloyy. =
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1.16. Example. There is a countable plane fan which contains a Q-point, is
not of type N and is pairwise smooth. )

Proof. Take in the plane R? a ‘dendrite . K such that the closure of the set
of all ramification points of K is an arc A. The simplest example of such a
dendrite is pictured in Fig. 6 of [24], §49, VI, Remark, p.247. Let p and q denote
the end points of A. Take, again in R? a sequence of arcs pp, such that
(i) g=limp,, (ii) for each distinct m, ne N we have pp, N pp,,= {p}=ppP, N K, and
(iii) the arcs pp, approximate K without folding back so that K=Lim pp,. Next
consider the union K U | ) {pp, :ne N} and shrink the arc 4 = K to the point p.
The resulting space is a,fan with its top p being a Q-point. In a routine way we
may verify the two other properties of this fan.

2. Bend intersection property

_ The following concept was introduced by T. Matkowiak in [27], p. 548.
Let a continuum X and its subcontinuum A be given. A continuum B c 4 is
called a bend set of A provided there are two sequences {4,} and {4,} of
subcontinua of X satisfying the following conditions:

(2.1) A,n A, #0 for each neN; ) _ .
(22) A=LimA,=Lim 4,;
(2.3) B=Lim (4, N 4;).

We say that a continuum X has the bend intersection property
provided for each continuum A4 < X the intersection of all bend sets of A4 is
nonempty. It is shown in [27], Corollary, p.548 that '
(2.4). each selectible dendroid has the bend intersection property.

+ T.Matkowiak’s Example 1 in [27], p. 548, shows that the converse is not
. true, and he observes (on the same page) that

(2.5) if a dendroid is of type N, then it has not the bend intersection property, and
hence it is not selectible. ' :

In [25] T. J. Lee studies some further relations for dendroids between the
bend intersection property and the concept of having a Q-point and of being of
type N. In particular, he showed in Statement1 of [25] that if a dendroid X
contains a Q-point p, then there is a subcontinuum of X that has p} as its bend
set. The main result of [25] says that if a fan contains no Q-point and is not of type
N, then it has the bend intersection property. Thus by Theorem 1.9 one gets that
(2.6) every contractible fan has the bend intersection property.

Moreover, the following characterization of contractible fans is a
consequence of L. G. Oversteegen’s Theorem 1.9 and of Statements(2.5)
and (2.6).

(2.7) A fan is contractible if and only if it contains no Q-point, has the bend
intersection property and is pairwise smooth.

Another result which is related to the properties discussed was obtained by
T. J. Lee in [26]. He proved that a dendroid X is not of type N if and only if for
each arc A contained in X the intersection of all bend sets of 4 is nonempty. In
particular, this condition is satisfied for all contractible dendroids (see [26],
Corollary). However, we would like to attain a stronger result, which corresponds
to (2.4) and (2.6).
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2.8. Question (T. J. Lee). Does every contractible dendroid have the bend
intersection property?

3. Interrelations

As we already know from (2.5), one of the three conditions (1.13), (1.14) and
(1.15), viz.(1.13), implies not only noncontractibility of dendroids ([31],
Theorem 2.1, p.838), but also their nonselectibility. Now we are going to show
that the other two, (1.14) and (1.15), do not have similar consequences. We recall
some examples first.

In T. Matckowiak’s Example3 of [27], p.549 a selectible countable
dendroid D is constructed which has exactly three ramification points, contains no
Q-point, and is not pairwise smooth (these properties can easilly be observed just
from the definition of D). Therefore we see that property (1.15) of being not
pairwise smooth does not suffice for nonselectibility of a dendroid. The same
conclusion can be drawn for fans from an example described in Proposition4 of
[7], Fig. 2, p.111 and 112, because the fan constructed there is selectible, contains
no Q-point and is not pairwise smooth. But even if we join the existence of a
Q-point, i.e. (1.14) to (1.15), the two conditions together still are not strong enough
to imply nonselectibility. This can be seen from an example below.

3.1. Example. There exists a countable plane dendroid which has exactly
two ramification points, contains a Q-point, is not of type N, is not pairwise smooth,
and which is selectible.

Proof. Let the plane R? be equipped with the polar coordinate system
(p, @), and let |z| denote the Euclidean norm of a point ze R2 (i.e., if z=(p, @), then
|z|= p). Further, given a nonnegative real.number k and a point z=(p, ¢), we let kz
denote the point (kp, ). With this notation let p=(0, 0) be the origin, and let
a=(1, 0), b=(1, n/2), and c=(1, n). Further, for each neN we put

a,=(1, —=n/2n), b,=(1+1/n, n/2), c,=(1+1/n, n),
d,=(1/n, n/4), and e,=(1/n, 37/4).
Define

X, =acupbu| ){(ad,ud, b,Ub,e,e,c,Uc,a,) :neN}

and note that X, is a dendroid having the points a and p as the only ramification
points. It is apparent that the point a is a Q-point of X, and that X , is not of type
N. To see that X, is not pairwise smooth note that the sequences of points d, and
e, have the point p as their common limit, and neither of them dominates the

other. In fact, the sequence of straight line segments d, a tends to the segment pa,
while there is no sequence of points x, in the dendroid X, with the point a as its
limit and such that the arcs e, x,, have pa as the limit. This shows that the sequence
{d,} does not dominate {e,}. Similarly, note that c=limc, and that pc=Lime,c,,
while there is no sequence of points y, in X, with the property that c=1im y, and
that pc is the limit of the sequence of arcs d,,. So {e,} has not dominate {d,}.

Now we prove that the dendroid X, is selectible. The idea of this proof is
taken from T. Maékowiak’s description of a selection of the above mentioned
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dendroid D in Example 3 of [27], p. 550. Let T= ac U pb stand for the limit triod of
X, . Define a mapping s : T x T — T as follows. Given two points x and y in T, we
let s(x, y) to be a point of T such that

IsGe, YI=1lxI—Iyll /2

and such that s(x, y) belongs either to the segment p_x if |x| =|yl, or to the segment '
py otherwise. In other words, s(x, y) is the mid point of the arc from x to y
contained in T. Further, put C(T, p)={K e C(T): pe K}. We shall use a function
a: C(T, p) x R? - T that assigns to each subcontinuum K of T with pe K and to
each point ze R? a point (K, z) of pzn K having the greatest norm.

Now define an auxiliary mapping ¢’ : C(T) —» T as follows. Let Ke C(T).

1) If peK, we put :

a=a(K, a), b=a(K, b), and ¢'=a(K, ¢),

and define .

3.2) o (K)=a(K, 4s(s(3a’, b’), s(b’, c'))).

2) If pe T\K, observe that K is an arc, and denote by x and y its end points,
with |x|=|yl. Then put o' (K)=x.

It is easy to show that ¢’ is a continuous selection for C(T) having the
following properties:

(3.3) if acK = paupb c T, then ¢ (K)=a;
(3.4) if beK c ppbupc = T, then o (K)=b;
(3.5) if ceK c pc = T, then ¢ (K)=c;
(3.6) if a, ceK < T, then o’ (K)eac;
(3.7 o (N=a.

Now let a mapping B : X, — T be a retraction from X, onto T such that for
each neN we have

B(a,)=a, B(b,)=b, B(c,)=c, B(d,)=B(e,)=p

and that f is linear on each straight line segment which is contained in X, but not
in T. Further, we put

Xo={(p, P)eX, :0€l0, n]},

(see Fig4 of [15], p.78, for a picture of a homeomorphic copy of X,) and we
denote by <, the partial order on X, with respect to the point p, i.e,x<,yifand
only if px = py. We define a selection ¢ : C(X,) = X, as follows. Let K € C(X,) be
given. Consider three cases.

(@ If KN T #Q, then we define ¢(K)=0"(KNT).

b) If KnT=Q # KnX,, then note that the set

B~ (e BKNXNNKNXo=(BI(KnXo)™ (o (BKNX,))

consists of at most two points; we define o(K) as the first one of them in the
ordering <,; i.e. we put
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o (K)=min {(B1(K n X))~ (¢’ (B(K N X,)))}.
sp i
©) If KnT=Q =K n X,, then (8| K)~ (¢’ (B(K))) is composed of just one
point, which we accept as o (K).
Using properties (3.3)«(3.7) of ¢’ one can verify that ¢ is continuous. Thus the
proof is complete. .

38. Remarks. According to case (a) of the definition of o above, we see
that conditions (3.3)-(3.7) hold true if ¢’ is replaced by o. In connection with this
we have the following observations.

1) Since the subcontinuum abu | ) {ab, :neN} of X, is homeomorphic to
the harmonic fan, condition (3.3) holds for each selection ¢ for C(X,) by the.
S. B. Nadler and L. E. Ward Lemma4 of [30], p. 371, which says thatif o is a
continuous selection on the hyperspace of subcontinua of the harmonic fan with
top v and with limit segment L, then o(L)=v.

2) As consequences of (3.4) and (3.5) we have o (pb)=>b and o (pc)=c. Both of
these equalities have to be satisfied for an arbitrary selection o for C(X,)
according to T. Mackowiak’s main theorem of [27], p.547, which runs as
follows. Let the hyperspace C(X) of a dendroid X admit a continuous selection o,
and let two sequences {4,} and {4,} of subcontinua of X satisfy the following
conditions:

2.1) A,NA, # @ for each neN;
2.2) Lim A, c A=Lim 4, ;
2.3) B=Lim (A4, N A4,).

If 6(A,u A,)e A, for each neN, then o(A4)eB.

3) Also condition (3.7) must be satisfied for every continuous - selection o for
C(X,), which can be seen from Theorem 1.8 above.

4) The author does not know whether conditions (3.4)-(3.6) must hold if o is
an arbitrary continuous selection for C(X,).

5) The results quoted above in 1), 2) and 3) imply the choice of the
coefficients 3 and 4 in the definition (3.2) of the auxiliary selection ¢’. The reader
can verify that if we put for example the value 2 in place of 3 in formula (3.2), then
continuity of ¢ is violated: we then get o(ab)=p instead of o(ab)=a in (3.3),
which contradicts to the S. B. Nadler and L. E. Ward lemma stated in 1)
above.

39. Remark. It can be observed that if we add to the dendroid X, a

straight line segment pd which is situated in three-space in such a way that it is
perpendicular to the plane R? the dendroid X, is located in, then the union
X,=pdu X, is a nonplanar dendroid having all the other properties of X,. The
fact that X, is nonplanar follows from an observation that the point p is a
strongly. inaccessible point of X, (i.e., there is no embedding h : X, — h(X,) = R?
of X, into the plane R? such that h(p) is accessible from thé complement R*\X,),
and from Proposition 2 of [12], p. 206, saying that if a space X contains a planar
subset S and an arc pq such that pg n S={p}, where p is a strongly inaccessible
point of S, then X is nonplanar. .
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Now we give an example of a fan with similar properties. The existence of
such an example was known to T. Mactkowiak, as was announced in the last
paragraph of [7], p. 118, but no proof of its properties has been published by him.
The proof presented below is again patterned after T. Mackowiak’s ideas
taken from his paper [27].

3.10. Eaxample. There exists a countable plane fan which contains a
Q-point, is not of type N, is not pairwise smooth, and which is selectible.

Proof. We apply the same notation as in Example 3.1. Let again p=(0,0) be
the origin, and for each n, meN let

a,=(1/2""%, n/2"), ap m=((1/2""" 1+ 1/m), =/2"),
b,=(1/m, n), and p,, m=(1/(m-2"), 3n/2"*+2),
Put
(3.11) T=\J{pa, :neN},
and for a fixed meN let

pbm=bmal.mu U {an.mpn.mupn.mani-l.m‘ :nEN} v {P}-

It is evident that T is a countable fan with the top p and that for each natural
m the union pb, is an arc from p to b,. Note further that the sequence
{pb,, :me N} limits on the fan T, and consequently the union

X;=TulJ{pb,, :meN}

is a countable fan (see p. 301) of [13] for a picture of this fan). It can easily be seen
that p is a Q-point of X; and that X, is not of type N. To see that X, is not
pairwise smooth note that the sequences of points p,, ,, and p,, ,, have the point p
as their common limit, and neither of them dominates the other. This last
statement can easily be shown in the same way is it was done before, in
Example 3.1. So we omit the details.

To describe a selection for C(X 3) we employ the same functions s : Tx T — T
and a : C(T, p) x R? — T as before in the proof of Example 3.1, and so we need not
repeat them here. We define a selection o :C(T) > T ﬁrst Let KeC(T).

1) If peK, put x,=a(K, a,), consider a sequence of points y, of K
determined by the conditions

Yo=p and y,=a(K, 2s(y,-, 3x,,) for each neN,

and define ¢’ (K)=a(K, limy,).

2) If pe T\K, observe that K is an arc xy in T. Let |[x|=|y| and put ¢’ (K)=2x.

It is easy to see that ¢’ is a continuous selection for C(T) having the following
properties: )

(3.12) if peK =p_x,, for some neN, then ¢ (K)=x,;

- (.13) | o (D)=p.

Now let a mapping § : X; — T be a retraction from X, onto T such that for

each n, meN we have

B(an.m)=an and B(bm)=ﬂ(pu. m)=D
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and such that g is linear on each straight line segment which is contained in X,
but not in T. Further, we denote by < , the partial order on X ; with respect to the
point p, i.e., x<,y if and only if px = py. We define a selection ¢ : C(X ;) —» X5 as
follows. Let Ke C(X ;) be given. Consider two cases.

@ If KN T #@, then we define ¢(K)=0"(KNT).

(b) f KN T=Q,i.e, K = X;\T, then observe that K < pb,, for some me N,
and therefore the set

B~ (' (B(KN) N K=(BIK)"' (¢’ (B(K))

is finite; we define o (K) as the first one of them in the ordering <, ; i.e. we put

o (K)= min {(8]| K)™* (¢’ (B(K)))}.
: sp
Using properties (3.12) and (3.13) of ¢’, one can verify that ¢ is continuous.
Thus the proof is complete.
The method of construction of a continuous selection o for the hyperspace of
subcontinua shown in Examples 3.1 and 3.10 can also be applied to some other
examples, in particular to the fan defined in Example 1.16.

3.14. Example. There is a countable plane fan which contains a Q-point, is
pairwise smooth, and which is selectible (and thus is not of type N).

Proof. The fan defined in Example 1.16 has the needed properties. The
details are left to the reader.

3.15. Remark. Note that the sequence of arcs pb,, which approximates the
limit fan T in X, of the above Example 3.10 is constructed in such a way that the
segment pa, is approximated as the last one among all the segments pa, of T for
ne N. If we change this way of approximation of T into the opposite one in which
the segment pa, is approximated as the first one, we lost selectibility. To be more
precise, consider the following example, in which the same notation as in
Example 3.10 is used. ,

Let T be defined again by formula (3.11), and for each me N let c,, denote the

middle point of the straight line segment b, a,, ». Further, note that the union

pam+l=p_c:ucmal.mu L,‘ {an.mpn.mupn.man+l.m :ne{l, 2---;'"}}
is an arc from p to a,,+, and that the sequence {pam+1 :me N} limits on the fan T.
Consequently the union

X,=TulJ{pam+ :meN}

is a countable fan. It can easily be seen that again p is a Q-point of X,, but
contrary to X,, the fan X, is of type N and thus, according to (2.5), it is not
selectible.

As it can be observed from examples considered in other papers, as well as
ones constructed above, the only condition we know that implies a fan is
nonselectible is (1.13), i.e., that of being of type N. Thus it is natural to ask if the
inverse to (2.5) is true.

3.16. Question. Does there exists a nonselectible fan which is not of
type N?
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Note that a positive answer to Question 0.5 implies a positive answer to 3.16
by Theorem 1.9. Note also that there exists a nonselectible dendroid with exactly
two ramification points having the bend intersection property (vizz. T. Maé-
kowiak’s Example1 of [27], p.548), and therefore it is not of type N by (2.5).

To have a full view of the matter we list below examples of selectible, as well
as of nonselectible fans which have or do not have the considered properties (1.14)
and (1.15). Because of (2.5) we exclude (1.13) from the discussion below.

A. Selectible fans. 1) The well-known harmonic fan has no Q-point and
is pairwise smooth. 2) A fan without any Q-point but which is not pairwise
smooth is presented in Fig.2 of Proposition 4 of the author’s [7], p. 111 and 112
(see also Fig.3in B. G. Graham’s[20], p.91). 3) A fan containing a Q-point that
is pairwise smooth is shown in Example 3.14 above. 4) Finally one with a Q-point
that is not pairwise smooth is constructed in Example 3.10.

B. Nonselectible fans. Note that all examples presented in this section
are of type N. 1) Fans without any Q-point which are pairwise smooth are:
presented by B. G. Graham in Fig. 5 and 6 of [20], p. 92. 2) The one point union
of the two fans pictured in Fig. 3 and 5 of [20], p. 91 and 92 having their top as the
only common point is a fan without any Q-point but which is not pairwise
smooth. 3) A fan containing a Q-point that is pairwise smooth is shown by C. A.
Eberhart and the author in p. 95 of [10]; see also Fig. 7 of [20], p. 93, and
Example 1.2 of L. G. Oversteegen’s [31], p. 838. 4) An example of a
nonselectible fan containing a Q-point that is not pairwise smooth can be
obtained as the point union of two fans, namely of X in Example 3.10 above and
of the one in Fig. 5 of [20], p. 92.

The above list shows that conditions (1.14) and (1.15) have no effect on the
selectibility of fans.

4. R-continua

Besides (1.13), (1.14) and (1.15) other sets of conditions that imply non-
contractibility of dendroids are known from the literature. One such set is formed
by conditions considered in [11], [13], [14], [15] and [18], namely, generalizations of
the notion of an R-arc and of an R-point defined in [11], p.230 and 231 and
exploited in [7]. The concept of an R-continuum was introduced by S. T. Czuba
in [13], Definition 1, p. 300, and renamed an R!-continuum later in [15]. He also
introduced the similar notions of R2?-continuum and R3-continuum in [15).
Following [15]), Definitions1.1, 12 and 1.3, p.75, a nonempty proper
subcontinuum K of a dendroid X is called an R-continuum (where i=1, 2, or
3) if there exist an open set U containing K and two sequences {C}} and {C2} of
components of U such that _

LsC! N LsC? for i=1,
K= {LimC,} NLimC? for i=2,
LiC} for i=3.
Theorem 9 of [15], p.78 (see also [13], Theorem 3, p.300) says that
(4.1) if a dendroid X contains an Ri-continuum (where i=1, 2, or 3), then X is
not contractible. . '
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Some interrelations between the concept of an R-arc and an R'-continuum
are studied by S. T. Czuba in [15]. For details see [15], Proposition2 and
Examples 3 and 4, p.75 and 76; Proposition5 and the paragraph following it,
p-77; and Proposition 10 and Corollary 11, p.78.

Taking (4.1) into account, one can conjecture that containing an
R'-continuum may imply the nonselectibility of a dendroid or of a fan. However, it
is not so. Not only does the existence of a particular R-subcontinuum in a fan X
not necessarily violate its selectibility, but even the presence of a subcontinuum
thatis an R'-continuum for i=1, 2 and 3 simultaneously does not imply the fan is
selectible. Namely observe that the fan X of the author’s Proposition4 of [7],
Fig.2, p. 111 and 112 contains a singleton which is an R'-, R?- and R3-continuum,
so that X is not contractible, while it * is known to be selectible.

On the other hand, it can easily be observed that the author’s examples of
nonselectible fans pictured in p. 95 of [10] (see also B. G. Graham’s Fig. 7 in [20],
p-93) and in B. G. Graham’s Fig.5 and 6 of [20], p.92, do not contain any
Ri-continuum. This shows that the property of not being selectible does not imply
the existence of an R’-continuum for fans, and thus for dendroids in general.

Hence, we can conclude that there is no direct relation between the existence
of an R’-subcontinuum in a dendroid and its selectibility.

5. The set function T

Some other conditions implying noncontractibility of dendroids are known
which are expressed in terms of the set function T. They were discussed e. g. in [1],
[3] and[6]. To formulate them, we need a definition. Given a compact space X and
a set A < X, we define T(A) as the set of all points x of X such that every
subcontinuum of X which contains x in its interior must intersect A (see [19],
p-113). D. P.Bellamy and H. S. Davis have shown (see [2], Corollary 1, p. 373)
that if X is a continuum and A4 is a subcontinuum of X, then T(4) is a
subcontinuum of X.

One of the conditions mentioned above can be formulated in the following
way:

(5.1) the continuum X contains two closed subsets A and B such that

AnNnT(B)=@Q =Bn T(A) and T(A) n T(B)#Q..

Then we have the following result (see Corollary1 in [1], p. 48 and in [6],
p-273).

5.2. Proposition (D. P. Bellamy, J. J. Charatonik). If a continuum X
satisfies condition (5.1), then X is not contractible.

For dendroids condition (5.1) is equivalent (see [14], Lemma 5, p. 304) to the
following one, which has been discussed e.g. in [1], p.47, [3], and [6]), p.271:
(5.3) the dendroid X contains two points a and b having the property that

ae X\T(b), be X\T(a) and T(a)n THL)#D.

Moreover, if A and B are subsets of X as in (5.1), then, according to the above
quoted result, the points a and b of (5.3) can be chosen so that ae 4 and be B. For
a stronger version of Theorem 5.2, namely with (5.3) applied to a subcontinuum of
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X, but only.in case X is a fan, see L. G. Oversteegen’s Theorem4.2 of [32],
p- 394. ;

Similarly to the previous sections of the paper, we would like to know if
condition (5.1) is related in a way to the nonselectibility of dendroids. To this end
we discuss four possibilities.

1) The harmonic fan is selectible and does not satisfy (5.1).

2) The one point union of two harmonic fans having the limit point of the set
of their end points as the only point in common (see the author’s Proposition 3
and Fig.1 of [7], p.110) is a selectible countable plane dendroid X with two
ramification points a and b satisfying condition (5.3); thus X satisfies (5.1) as well.
However, the author does not know any example of a fan with the same
properties.

3) There is a countable plane fan which is of type N (thus it is nonselectible),
and which does not satisfy condition (5.1). In fact, the fan described and pictured
by C. A. Eberhart and the author in [10], p.95 (see also B. G. Graham'’s
Fig.7, p.93 of [20] and L. G. Oversteegen’s Example 1.2, p. 838 of [31], and
Example 2.3, p.380 of [33]) meets all the required conditions.

4) There is a countable plane fan which is of type N (thus it is nonselectible),
and which satisfies condition (5.1). In fact, let X be the fan mentioned in 3), and let
us take as Y the one-point union of two copies of X such that the fans under
consideration have the common top as the only point of their intersection. Then Y
has all the needed properties.

The examples presented above show that (5.1) neither implies nor is implied
by nonselectibility. _

Given a compact space X and a set A c X, we define K(4) as the set of all
points x of X such that every subcontinuum of X which contains. 4 in its interior
must contain x (see F. B. Jones’ [21], p.404). It is known (see e.g. E. J.
Vought’s Lemmal in [34], p.374) that if X is a hereditarily unicoherent
continuum and if A4 is connected, then K(A) is a continuum. Further, S. T.
Czuba has shown ([16], Lemma 6, p. 197) that for any subcontinuum A4 of the
continuum X we have K(4)={xeX :T(x)n A4 #Q }. '

Consider the following condition that a dendroid X may satisfy:

(5.9 there is a point p in X with {p} # K(p) = T(p).

5.5. Question. Does condition (5.4) imply nonselectibility of the
dendroid X? ) .
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