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1. Introduction

" The following inequality due to Ky Fan was recorded in [1]:
I} x, ] 1%
1 —_— | — _ 0=x,=
5 [m(l—x.) Ta—x) 0=

unless x, =x,=...=X,.
With the notation

1
2’

1
M, (9=(- Z1 xP)'", x,>0;

and
M, (x)= lim M, (x)=(TT} x;)'/,

p—0
(1) becomes
M, (x) M, (x)
) My(l—0) <M, (-
D. Segaiman [2] conjectured that
M, (x) M, (x)
3) M,(Ii—x)<M,(l—x)

» P<g.

F.Chan,D.Goldberg and S. Gonek [2] gave some counterexamples when
0<2"/p<2’/q or p+4q>9. In addition, they proved that (3) is true for p+q=0>p
or 0<p=<1=¢g=2.

Recently the case p=—1 and g=0 was proved to be true by Wan-Lan
Wang and Peng-Fei Wang [3]. And the case —1<p=<0=<g=1 was proved
by Guang-Xing Li and Ji Chen [4].

In this paper, we determine all the exponents p and q such that (3) is true.

Theorem. For arbitrary n, p<gq, the inequality
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T xp 1 1
@ [ sty |5 s | 0<xsp

holds if and only if |p+4q|<3, 2°/p=2%q when p>0, p2? <q2? when q<O0.

The proof of the sufficiency is contained in Section 3, 4 and 5. In the proof we
assume pqg # 0, otherwise by letting p or g — 0, it is easy to see that (4) is also true.
In Section2, we will prove the necessity.

374

2. Proof of the necessity

In [2], it was proved that (4) and p <q were equivalent when n=2, and that if

(4) holded, then 2?/p=2%/q for p>0.
When ¢ <0, take x;, =x,=...=x,_; =€ (0<e<1/2) and x,=1/2, (4) becomes

[ (= e+ (3 ]Wé[ (=Dt (3" ]m,

5) 1 1
(n——l)(l—s)"+(§)’ (n—l)(l—s)"+(§)“

or
1
P4 1/p 1— SN—1r
o "+ 3! B [A—ap+5; ] |
[8q+2q(n_1]1/q [(1_8)4+2q(n_1]l/¢
Let ¢ - 0, (6) yields
1
1 1/p
Q) 15[ "Fe=D
— 1 :
11 +ZT(;-——T)] 1a
hence
8) [1+;]1/v2[1+—1——]‘“
2P(n—1) - 29(n—1) )

. ; o1 ;
By using the Maclaurin expansion in o we obtain

) 1+(2Pn)"*+o0(1/n*)21+(q27n)~ ' +o(1/n?).

So if p2P>¢q29, (4) would be faulse for sufficiently large n.
In the equivalent inequality of (4):

z:(l—ui)p 1/ [Z’,‘(l—u‘)"]u '
(10) [ w+u,)'] TS Sy 0Sus<t
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Let ﬁl=u2=...=u,_,=0 and u,=u (O<u<1), then (10) becomes
(an [(n—l)+(1—u)P:I”pSI:(n—l)+(1—u)¢:|w
n—1D+1+uwr Sln—D+1+uy )

Take the Macluarin expansion of (11) in u:
2 , (n—1i(n—2)p*—2np]+2(n>+2)

1—§u+?u e ud+ou*)
(12) él__2_u+32u2_(n—l)[(n—2)q2—33nq]+2(n2+2)u3+0(u4)-
n n 3n
Thus for u sufficiently small, (10) holds only if
(13) (n—2)p*—3np=(n—2)q*>—3nq,
or _
(14 (P—9)(n—2Xp+q)—3n]20.
So for n=3, we have
3n
(15) Cptes=_—.
Let n— + o0, (15) yields p+g=<3.
) Similarly, the expansion of (10) with u, =u,=...=u,_;=u (O<u<1), u,=0
gives .
(16) p+qz—o.
n—2

So we obtain p+g= —3.

3. An equivalence proposition

In this section, we are to establish an equivalence proposition as follows:
Proposition. For p<gq, the following inequalities are equivalent:

(i) [ Z'i lle ] 1/p < [ z'; Aix? ]1/«
T A4(1—x;)P [ 2140 —x,)* ’
where 4,>0, 0<x,;=1/2, i=1, 2,..., n and x,, X,,...,X, are not all equal: .
@ [ AXP + py? Tuw [ Ax%+ py? ]1/«'
A(l=x)P+u(l—y) | | A(l=x)+pu(1—y)* ’
where A, u>0, 0<x # y<1/2;
(i) |:11+(1—-u)" p < A+(l—u)“]m,
A+(1+uwP | LA+ +u)?

where 1>0, O<u<1.
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Proof. (i) obviously implies (iii).
Now suppose (iii) is true, let x>y and y/x=1—u, x/(1—x)=k, then O<u<1,
0<k=<1 and (1—y)/(1—x)=1+ku. So (ii) is equivalent to the following:
1. A+p(l—uw)® 1 A+p(l—uw)f
ky=-1 —= .
Sy = I Ak = p - At (L + k)

Derivate f(k), one can obtain
f,(k)_—u(l+ku)“"u (1 +ku)P~'u
A+ p(1+ku)? A+ p(1+kuy?

amn

_u u(1+ ku)? n(1+ku)?
(18) ‘1+ku[z+u(1+kuy_z+u(1+ku)']<°'
Hence |
_t AL Ay
(19) f(k)éf(l)—qln;__’_(l_,_u)q P Ay

(ii) is established. )

We will use induction to show that (i)-is true if (i) holds. At first, (ii) is the
case n=2 of (i). Now assume that (i) holds for some n (n=2).

Let 1/2=x,2x,2...2 X+, and x; are not all equal, then there exist u>0
and v=4, 4,4+, /#>0 such that :

20) =taxk pXE 4+ Ane 1 X+t

S AL0—%) A0—x P+ st (I—=Xns1)
_ Ay x§+vxpea _
A(1=x P +v(1—Xps1)

It is clear that (1, —pu)4n+1—v)<0. Without loss of generality, we may assume
that 4,=u. So '

p-

(e HTIAX
G =%, P+ 23 (=% Y

By the assumption, we have

R___[ . (Al_#)xf'i'zz)'ixf ]1/,
(4 —

1) R?

22) X —x, P+ T3 4, (1—x,F

S[ (Al—l‘)x‘i +Z5 Aix? ]llq
- (11—1‘)(1"‘1)«'*'25}1(1—":)‘ :

and

23) R =[

UXE+ An+1 Xn41 ]1/,,<[ px+An+ 1 X041 1/e
(=% )P+2pr1 (1 =Xn41)° p(l=x)+ 21 (1—=x,, )| °

So we have
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' =112 X9
24 R<| —=1 4% g,
S <[zz“xi(1—x.-)"]

Therefore, we get (i) is true for arbitrary n, the proposition is established.

4. Three lemmas

Lemma 1. If <0, a<f=<1—a, 0=Su<]1, then
(25) A+u+1—ur=1+uf+(1—uf,

the equality is attained if and only if u=0 or («, f)=(0, 1).
Proof. Let <p(x) (1+uy*+(1—u)* O<u<1l), then

(26) (p"(x) (1+u)"[ln(1+u)]2+(l—u)"[ln(l—u)]2>0.
So we have to establish (25) only for f=1—a, i.e. .
27) Ow)=01+ur+1—uwy—[(1+u)'" ’+(1—u)‘ “]

where a<0, O<u<1.

Ouy=2 T i, ) ( _“)]uz"'

n=0

2n 2n—1 2n—-1
=2a(ax—1) Z ——[ I (x—k)— II (——oz——k+l)]
N n= 2(2 )' k=2

2n 2n—1 2n—1
=20(x—1 Z II (x—k)— H —a—k
2 2a( ).. 2(2),[ (x—k) ot I +1|]

(28) >O.

This proofs the lemma
Lemma 2. If O<a<pf<l—a and O<u=1. Let
(29) G @) =(1+uf+(1 —uf—(1+uwf —(1—up,

then there exists a unique uy, such that
(i) Gw)>0 for O<u<u, ;
(i) Gw)<O0 for ug<u=l.

Proof. We have ,B(B—-l)_<'o:(a—l)<0 hence

a(a—l)
(30) 0<3B-D~
Define
@31) R (i) i U A SO

A+u) 24+(1—u"2’

We have .

(B=2U(1 +wP 2 —(1—uf 73]
(14w 2 +(1—up?

g W=
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_@=2)1+up -1 —w* 2 +uf 2+ (1—u)f?]
[(A+ur 2+ (1—up2]2
-2
< +u)¢_z°‘+(1_u),_2], ([ +uwf 3 —(1—wf 3 (1 + w2+ (1 - 2]
—[A+u =1 —u 3 A +wf 2 +(1—uf 2]}
2a—2)1 +uy+#=5 1—u,,_
1+u)ﬂ *1<0.

1—u,, 4
(32) —[(l+u)“_2+(1—u)“"2]2[(1+u)a —(

So g (u) is strictly decreasing with g (0)=1 and g (1)=0. Hence there exists a unique

u, €(0, 1) such that

_a(x—1)
(33) g(ul)—ﬁ—(—ﬂ—_—l).
Note that
(34 G wW=a[l+ur ' —Q—wr ]-Bl1+uf ' —(1—-uf]
(35)  G'@=—BE—DIA+u *+(1—uf™? 1[9(.,)—-;2;—} 3 b

and from above we know that G” (u)>0 for ue(0, u,), G” (w)<O for ue(u,, 1).
Because G(0)=G’ (0)=0, we have G'(u)>0, qu)>0 for ue[0, u;]. But
G'(1)= — o, so there exists a unique u,€(u,, 1) such that G’ (u)>d when
ue(u,,u,), G'(u)<0 when ue(u,, 1).
Then G (u) strictly increases in (0, u,) and strictly decreases in (u,, 1), and
since G(1)=2"—2¢<0, we can find a unique u,€(u,, 1) such that G(u)>0 in
©, o), G(w)<0 in (4, 1). :

Lemma 3. If p<q, p+q=<3 and 2°/p=2%q for p>0, then
(1+u)”——(1-—u)’2(1+u)"-—(1-—-u)“

(36) ’ , 0=u<l,
equality occurs if and only if u=0 or (p, 9)=(1, 2).
Proof. Let
P__(1— 1 (1 —u)
37 HE@=UHW=Oow Arwt-0owt o g
p q
Then

(38) H@=[1+uw '+(1—uwf  ]=[1+u) (1 —u)y" ")

When p<1, p—1<q—1=1—(p—1), by Lemmal we obtain H'(u)=0. Thus
H(u)=H(0)=0 with equality if and only if u=0 or (p, g9)=(1, 2).

When p>1, then g<3—p. Otherwise g—1=1—(p—1), then
(P—1P=2)_,
(@—1q-2)

Repeat the steps in the proof of Lemma 2, it should have H'(u) <0. So H(0)> H(1),
i.e. 2P/p<2/q. It is a contradiction. Thus O<p—1<g—1<1—(p—1). By

(39
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Lemma 2, H'(u) has its unique zero point u, in (0, 1), such that the following is
true:

H'(u)>0 for 0<u<u,, hence H(u)>H(0)=0;
H'(u)<O for ug<u<1, hence H(u)>H(1)=2?/p—2%/9=>0;
and H(uy)>0.
These establish the lemma.

5. Proof of the sufficiency of the theorem
From the equivalence proposition in Section 3, we only need to prove the
following inequality:
}.+(1—u)”]llp<[ﬂ.+(l—u)¢
A+(1+up A+(1+u)

where A>0,0<u<1, p<gq, |p+q| <3, 2°/p=2%/q when p>0, p2? <q2? when ¢ <0.
The above inequality is equivalent to

1 A+(Q—uf 1 A+(1—u)

(40) [ 14,

@41) FO= g vy s araruwy
But
TPV S NS WS 1 SN U
FO= e Tx0+of) plavd—up PEY
@2) =(A4%+ BA+C)/Q(4),
where

@3)  OW=MA+(1—uwrlA+1+u)f A+ —u A+ +u)],
=(1 +uf—(1-uw? (1 +ulf—(1—u)p

(44) A

4 p
5) B=[(1+up+(1 —u)P](l_""“_)";(l__“)q
- [(1+u)¢+(1_u)q](_1119_’#)f’
R e e

By Lemma 3, when (p, q) # (1, 2) and (p, @) # (—2, —1), we have A<0and C>0.

If (p, 9)=(1, 22 then A=0, B= —4u®<0, C=2u3(1—u)*>0. If (p, g9)=(—2, —1)

then A= —2u>/(1 —u?)?<0,B=4u3/(1—u?)*>0, C=0. Thus for all these cases,

f ’().})~ hasS a unique positive root 4, such that F'(4)>0 for 0<i<4, ; F'(4)<0 for
>Ay. So

47) F(A)> F(0)=F(+ 00)=0 for A>0.
Now the theorem is proved.
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6. Some remarks and a conjecture

Remark 2. In the case pq # 0, from the processes of the proof, we can see
the equality in (4) is attained if and only if x, =x,=...=x,.If pq =0, all the results
in Section 2 to 5 can be founded without any difference with the case pq # 0. So
the equality in (4) occurs if and only if x; are all equal

Remark 2. Inequality (4) is for all natural numbers n, and there is not the
best result for each fixed n except n=2. We propose a conjecture for this condition
as follows:

Conjecture. If p<q, |p+4|<3n/(n—2),

(48) [1+427/(n—1)] P2 [1+42(n—1)] Y4 when p>0,
and :
(49) [1+1/2°(n—1)] 2 [1+1/2%n—1)] */* when ¢<0,
then

1 7 =1 xf
(50) iy < Sd—xy

unless x,=X,=...=X,.

1
]llq’ 0<xi§§’
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