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Suppose that f:Ex R xC(E,UE, R)x R*>R where E,, ESR'*" are given sets. Differential-
~ functional inequalities

DXZ(X, y)—f(x, Y, Z(X, }’)- Z, D,z(x, y))=P[Z](X, .V)Soy

(x, y)eInt E, are considered where D,z=(D,lz,...,D,.z) and z denotes an element of the space of

continuous functions from EqUE to R. We prove the following result. Suppose that P [u,](x, y)<0 and
P[v](x,y)=0on Int E.Ifu(x, y) Sv(x, y) on the initial set E, then under certain conditions concerning f
" and E we have u(x, y)Sv(x, y) on E. Our result is generalization of some results on first order partial
differential or differential-functional inequalities considered in [2]—[8]. It is essential fact in our
considerations that f satisfies the Volterra condition and it is non-decreasing with respect to the
functional argument.

1. Introduction -

We denote by C(X, Y) the set of continuous functions defined on X taking
values in Y where X, Y are metric spaces. Fory=(y,,...,y, €R"we define the norm
Iyl, =y |+ ... +1%D" if 1Sp<o and |y|,=max{|y|:1SiSn}. Let

p*=
Let

o1 for 1 <p<oo, p*=oc0 for p=1 and p*=1 for p=co.
E={(x, y)eR'*":x€(0, a], ||y||p§b—Mx},
Eo={(x, y)eR'"":xe[—1,, 0}, |yl ,=b},

Hx={(éa ,1)=(§9 nl"""'n}EEOUE :§§X},O§x§a,

where a, b, M>0,1,20 and Ma<b.
Assume that f:E xR x C(E,UE, R)x R"—R. The paper deals with first order
partial differential-functional inequalities

1 Dz(x, WS f(x, y, 2(x, y), 2, D,z(x, y)) for (x, y)eInt E.
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The solution of (1) are supposed to be continuous on E,UE and to have first order
partial derivatives in Int E. We assume that the function fsatisfies the following
Volterra condition: if z, Ze C(E,UE, R),z=Zz on H_and (x, y,s, )€ E x R x R"then
&, 3,8 2, 9=f(x, y, s, 2, Q).

First order partial differential or differential-functional inequalities have
been studied by many authors under various assumptions. The classical theory of
partial differential inequalities is described in [7], [11]. Solutions of differential
inequalities are supposed to be of class Din the Haar pyramid, (i. e. if we denote by
E the pyramid and by E, the initial set then z : E;UE—Ris called to be a function
of class Difit is continuous, possesses the derivatives D,z, D,z in Int E and the total
derivative on Fr En((0, a) x R), where (0, a] is a projection of E on time axis).
Differential-functional inequalities of the Volterra type in the Haar pyramid are
discussed in [4], [2], [3], [12]. There are considered solutions of class D in these
papers. The following inequality

D.z(x, Y)S f(x, y, z(x, y), z(x, ), Dyz(x, y)),

where the functional argument depends only on space variable, is analysed in [2].
Another inequality

D,z(x, y)S f(x, y, A(x, y, 2), Dyz(x, y)),

where A is an operator satisfying Volterra condition and is increasing with regard
to functional argument, is considered in [3]. Differential inequalities in the
following form

Dz(x, <[ f(x, y, z(x—s, y), D,z(x, y)) dR, (s, x, ) +g(x, y),
(V]

where R, g are given functions, are considered in [12]. Solutions of differential-
functional inequalities cosidered in [2]-[4], [12] are supposed to be of class D in the
Haar pyramid.

Now we will not need the assumption that the solutions are of class D. We
will assume, however, that they possess derivatives in Int E. Such a class of
solutions of differential inequalities (without functional argument) is considered
in [10].

The result contained in this paper is a generalization of theorems on
differential-functional inequalities given in [2]-[4], [12] and also of some results
considered in the monographs [7] (Chapter IX), [11] (Chapter IX). Our result is
also motivated by applications of partial differential-functional inequalities
considered in [4]. :

Differential-integral inequalities and differential inequalities with a retarded
argument are special cases of (1).

In the sequel we will use the following

Lemma 1. Suppose that:
“1) ueC(E, R) and u(0, y)<0 for (0, y)eE,
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2) there exists a positive number r such that for (x, y)eInt E satisfying 0 <u(x,
y)<rfunction u possesses the derivatives D,u(x, y), D,u(x, y) and D,u(x, y)<M D,
u(x, )l o

Thepse assumptions imply the inequality u(x, y)<0 for (x, y)eE.

The proof of the lemma you can find in [10].

2. Differential-functional inequalities

Let S, ={yeR" :(x, y)e E;uE} for xe[—1,, a]. Suppose that ze C(E,VE, R)
and denote by Tz the function defined in the following way: Tz(x)=max {z(x,
y) :yeS,}, xe[—1,, a. Since z is continuous, it follows that Tze C([—1,, a), R). (See
[11], Theorem 34.1.) We thus get T :C(E,VE, R)=»C([—1,, a], R).

If X = R*and a, f: X =R are given functions then we define max [e, f]: X —R by
max [, f](£)=max {«(&), B({)}, {€X.

The following assumption will be needed throughout the paper.

Assumption H. Suppose that the function o: [0,a] x R, x C([—14,a].R,)—R,
R, =[0, + ), satisfies the following conditions: .

1) o is continuous and non-decreasing with respect to the functional argument,

2) if n, 1€C([—1,, a), R,), x€[0, a), seR, and n(t)=1 (t) for te[—1,, x] then
o(x. s, n)=0(x, s, ) (Volterra condition).

We prove the following comparison lemma.

Lemma 2. Suppose that
1) assumption H is satisfied,
2) 0eC([—1,, O), R,) and thc comparison differential-functional problem:

7 (x)= o(x, n(x), n) for xe[0, a],
n'(x)=0(x) for xe[—1,, 0]
possesses the right-hand maximum solution 0 defined on [—1,, aj,
3) weC(E,VE, R) and o(x, y) £0(x) for (x, y)eE,,
4) there exists a positive number r such that for (x, y)elntE satisfying
6(x) < xx, y)<8(x)+r function w possesses the derivatives D, aXx, y). D,oxx, y) and
satisfies

2

D, oxx, y)SM | D,oxx, y) |l,* +a(x, X, y), max[Tw, O]).
Under these assumptions we have the estimation o(x, y)gﬂ(x) Jor (x, y)eE.

Proof From the theorem about the continuous dependence maximum
solutions on right-hand sides and initial conditions we know that there exists
£, >0 that for arbitrary 0 <e<e, and arbitrary meN (natural number) the initial
problem:
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nx)=0(x, n(x), 1)+ for xe[0, a],

rp(x)=(-9(x)+-'% for xe[—1,, 0]

possesses the right-hand maximum solution 6, defined on [—1,, 4] and satisfying
the condition lim 8,_(x)=6(x) uniformly on [0, a]. Since

m~—

0(x) < 0(x) + £= 0,(x) for xe[—1,, O],
0 (x)=o(x, 6(x), 0)+-5'- for x€[0, a],

0, (x)=a(x, 8,(x), 6,)+ %> o(x, 8,(x), 8,) for xe[0, a],

it follows from the theorem on strong differential-functional inequalities that

6(x)<0,(x) for xe[0, a]. We choose ¢ such as to 0,(x)<&(x)+ -;- for xe€[0, a].

Since 6,,(x)>o(x, 6,(x), 6,) for x€[0, a], it follows that there exists 0<r*<%

such that 8,(x)>a(x, ¢, g), x€[0, a], for an arbitrary function geC([—1,, a], R,)
satisfying 0,(1)<g(t)=< 0,,(7)+r*, t€e[—1,, a] and for each te[f,(7), 0,(7)+r*])
Suppose the assertion of the lemma is false. Then there exist x,€([0, a] and 6,>0
satisfying the following two conditions: ..

() ofx, y)=6€x) for (x, y)eH, ,
(i) for each keN there exists (x®, y"")eonHo such that

3) a)(x(k)' y"")>0(x"") and ,.li'?,, J‘(ls)=,‘.0.

Thus we have Tw(x)<6(x) for xe[—1,, X,]. Since Tw and 6 are continuous
functions, we conclude that there exist 0<r**<r* and 0<d<J, such that
Tax(x) < &(x) +r** for xe[x,, x,+J]. Hence

4) Tax x)<0,(x)+r* for xe[x,, x,+3J].
Letu :on +s— Rbedefined in this way u(x, y)=w(x, y) —0,(x) for (x, .V)Gon +5- We
can conclude from assumption 3) that ueC(H, .,, R) and u(0,y)=w(0,
y)—0,0)<w (0, y)—0(0)<0 for |yl p=b. We check the second condition of
lemma 1. Let us assume that (X, y) eInt H otd and O<u(x, y)<r**. We see at once
that 6(%) <0 (B) <%, 7)<8 (F)+r** <6F)+ §+ r** <®(%)+r. From assump-

tion 4) we derive the following estimations:



On First Order Partial Differential-Functional Inequalities 79

D, XX, i) D u(x, §)+0(X)= M | Dyox%, ) l|,*+0(X, (%, §), max[Tw,0))
=M | Dyu(%, y) ll,*+0(X, (X, ), max[Tw, 0)).
Since 0, (X)<w(X, y)<8,(%)+r*, it follows that

(5) 6u(%)>o(%, %, J), 6,)

Let us denote by g:[—1,,a]— R, anew continuous function such that g=max[6,,,
Tw). Since (4) and for xe[—1,, x,] we have the estimations
To(x)SH(x)<6,(x)<0,(x)+r* it follows that 6, (x)<g(x)<6,(x)+r* for
xe[—14, X, + J]. Hence from (5) we obtain 6,(X)>o(X, (X, y), g)=a(X, (X, y),

max [0, Tw]). The last inequality is true because 6 is non-decreasing with respect to
the functional argument and satisfies the "Volterra condition. So D  U(x,

V=M | Du(x, y) I, *4o(X, (X, y), g)—0(X)<M | D,u(x, y) I ,*. It is easily seen
that functlon u satxsﬁes the second condition of lemma’ 1. We can use the theses of
this lemma and obtain the inequality (x, y)<6,(x) for (x, y)eH, ,,. Letting

m—co we conclude that w(x, y) < 6(x) for (x, y)e H, ., which contradlcts (3). Thus
lemma 2 is proved.
Now we formulate the main result.

Theorem. Suppose that
1) assumption H is satisfied and the initial problem:

n'(x)=a(x, n(x), n) for xe[0, a],
n(x)=0 for xe[—1,, 0]

possesses the only solution n(x)=0 for xe[—1,, a),

2) f: ExRxC(E,uUE, R)x R"—=R satisfies the Volterra condition and is
non-decreasing with respect to the functional argument,

3) the estimation

f(xv yr S, z' Q)_f(xn .V. §r E' ‘-j)éa(x' s—s-' T(z_i))-*'M “ q—q "p.
is true for (x, y)eInt E, s, 5€R, s25, z,ZeC(E,UE, R), 222, q, §eR"
4) u, veC(E,VE, R) and the derivatives Du, D,v, D,u, D,v exist on Int E,
5) the initial inequality
(6) u(x, y)Su(x, y) for (x, y)€E,

and the differential-functional inequalities
Daul(x, y)< f(x, y, u(x, y), u, D, ulx, y)),

D.x, y)=f(x, y, ox, y), v, D(x, y)) for (x, y)eInt E

are satisfied. ‘
Under these assumptions the estimation: u(x, y) < u(x, y) for (x, y)e EUE s true.

™
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Proof. Let us define function w: E,wE—R as follows w(x, y)=u(x, y)—u(x,
y), (x, )€ E,UE. From assumption 4) and (6) we obtain weC(E,UE, R) and w(x,
»)<0 for (x, y)eE,. We use lemma 2 with 6(x)=0 for xe[—1,, a]. Suppose that
(x, y)elnt E and 0 <a(x, y)<r, r>0. It follows immediately from assumptions 3)
and 4) that

D,w(x, y)=D,u(x, y)—D,ux, y)
SS(x, y. u(x, y), u, Dyu(x, y)—f (x, y, x, y), v, DAx, y))
S/(x, y, u(x, y), max[u, v], Dyu(x, y)—f (%, y, Ux, y), v, DyAx, y))
Soa(x, ofx, y), max{0, Tw]))+M || Dyaxx, y) || ,*.

It follows from lemma 2 that u(x, y) <u(x, y) for (x, y)e E. This completes the proof
of the theorem.

Remark 1. In Theorem we can assume instead of (7) that

D,u(x, y)—f(x, y, u(x, y), u, D,u(x, y))
=D, vx, y)—f(x, y, ux, y), v, D,v(x, y)) for (x, y)elnt E.
Remark 2. Let us consider the following Cauchy problem:

®) D.z(x, y)=j(x, y, (x, y), z, D,z(x, y)) for (x, y)€Int E,
2(x, y)=z,(x, ) for (x, y)€E,,

where z,, : E,— Ris given initial function. Iffsatisfies condition 3) of Theorem with
o satisfying assumption 1) of the same Theorem then problem (8) will not be able
to have different solutions.

The uniqueness results of the solutions of the problem (8) in more narrow
class of functions are given in [1] and for differential problems in [11], [7]. Solutions
of class D in the Haar pyramid are considered in [1], [7], [11].

Remark 3. It is important fact that the problem (2) is differential-
functional. If we consider initial value problem as the comparison problem

7' ()=1/n(x), where n(x)=0,

n0)=0

then we find out that s=0 on (— o0, + o0) is a solution of (9). But the following
2

function s(x)=% for x=0 and s(x)=0 for x<0is also a solution. Therefore the

)

problem (9) does not satisfy condition 1) of Theorem. But we can consider
differential-functional comparison problem in the following form:

7 (x)= \/m, for xe[0,1], n(x?)=0,

7(0)=0.

(10)
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It is shown in [1] that (10) has the unique solution s=0 and is a comparison
problem of the Perron type.

3. Applications

We list below some problems which are solved by using
differential-functional inequalities theorems. ’ .

1. Suppose that zZ :E,UE—R is a solution of the differential-functional
equation

n
(1) D.z(x, y)=f(x, y. z(x, ). 2)+ Z g,(x, y), D, (x, y), (x, y)eE
i=1
and consider the following approximate problem. We are interested in finding a
sequence {u™, v™}2_,, u™, v'™ :E ;UE—R (Chaplygin sequence) satisfying the
conditions: ‘ :
(i) for every m functions u®™, v™ are solutions of linear equations
associated with (11),
(i) ™YtV zZ< YIS m=0, 1,... on E,UE,
(iii) lim u™=lim v"=Z on E,UE. '
m— 0 m— o .
This problem is considered in [4] for functions u™, v™, z of class D. The existence
and properties of the Chaplygin sequence are proved in [4] by employing
differential-functional inequalities theorem. The main Theorem of this paper
enable us to obtain more general theorem on approximation. We can assume in [4]
that functions u™, v, 7 are continuous on E,UE and possess partial derivatives
on E.
2. Let us consider an infinite system of first order differential-functional
equations

(12) D,z(x, y)+l‘2 ay(x, y)D,z(x, y)=f(x, y, z(x, y), 2),
=1

Jj=1,2,...,(x, y)€[0, a) x R"
with the initial condition
(13) 2(0, y)=w(y), yeR"

The Chaplygin approximate method is used in [9] to prove the existence of the
solution of the problem (12), (13). Differential-functional inequalities theorems

are the basic tools in [9].
3. Let us consider the following nonlinear differential-functional equation

(14) D.z(x, y)=f(x. y. z(x, y). z, D,2(x, y)).

Sufficient conditions for the stability and asymptotic stability of solutions of (14)
by means of Lapunov functions and the theory" of differential-functional
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inequalities are given in [5). There are studied solutions of class D. Using our
Theorem on differential-functional inequalities we can give up the assumption of
existence of the total derivative for solutions of (14).

4. Monotone iterative methods are used in theorems on existence of
solutions for nonlinear differential equations. Initial and boundary value
problems for ordinary or partial equations are considered ([8], [6]). The basic idea
is consist of three steps:

(i) constructing a sequence of some kind of approximate solutions,

(ii)) showing the convergence of the constructed sequence of approximate
solutions, and

(ili) proving that the limit function is actually a solution of the given
problem.

Monotone iterative methods are applied in the monograph [6] (see also [8])
for the initial value problem for the equation:

(15) D.z(x, y)=f(x. y. z2(x, y)+ Z g{x. y)D, z(x, y).

i=1

Differential inequalities are the basic tool in these works. Results from [8] can be
easily generalized on the differential-functional case by using our Theorem on
differential-functional inequalities.
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