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We consider a class of entire functions involving the Bessel functions in the kernel of their integral
representation. The distribution of the zeros of these functions is studied.

Let J,(z) be a Bessel function of first kind with an index v> —1. It is well
known that the function J, (z) in the domain C —(— o0, 0] is represented in the form
J,(2)=z" U, (2), where U, (z) is an entire even function. It is known also that U, (z)
has infinite "number and only real zeros. In this paper the distribution of the zeros
of the entire functions

1
(M ' A, 2= [f®) U, (z0) dt
o

is investigated. It is proved that under certain conditions of very common
character on the function f; the entire function (1) has not more than finite number
nonreal zeros.

Similar problems concerning the zeros of entire functions, more particular
than (1), have been concidered by G. Po6lya’[l], L. Tchakalov [2],
N. Obreshkov [3], P. Rusev [4] and I. Kasandrova [5]. Further on, the
following statements are used:

Lemma 1. Let two infinite sequences of real numbers be given:

(@) :a,,a,,... .and (A) :A,,...,A,,....,A,,...
with the propemes 1) the terms of the sequence (a) are different and ordered so that
O<a,<ay 4y fork=1,2,3,...; 2) the sequence (A) consists of nonzero numbers and

has finite number varlatlons i. e. there exists a natural nimber Nsothat A, A; >0
for k> N; 3) the functional sequence with a general term being the rattonal Junction

r.(2)=y+ X A,/(z—a}), yeR
k=1
is uniform convergent in every restricted domain which does not contain the
points +a, (k=1, 2, 3,...). Then the limit function r(z)= lim r,(z) has infinite

n=* o
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number real zeros and not more than 2N +2 non-real ones. Moreover, r(z) has
finite number multiple zeros and, from certain place on the zeros of r(z) are
separated by the points t+a,.

In L. Tchakalov [2] an analogous statement is proved The proof of
Lemmal is carried out almost by the same way.

Let us denote, as it is commonly used, the zeros of U, (2) by tj,,;, tj,,2.---»
+jykse-. (0<jy, 1<Jy.2<...) and let p=min(—1/2, v).

.  Lemma 2. Let f(t) be a function defined and bounded in the interval [—1, 1].
1

Let [|f(t)it* dt<oo. Then for the meromorphic function A,(f; z)/U,(2) the
)

Jollowing representation holds:

A D) ° A ) P
—_ vd X
@ Uv(z) {f(t)t - zt-ljv.hUv-i-l(’v ) 22 —J k

Moreover the series on the right-hand side of the above equation is uniformly
convergent in every bounded domain which does not contain any one of the points

tiva k=1, 23,..).

Proof. Let us denote R,(2)=A4 ,(f; 2)/U,(2), A=vr/2+7/4. Let us consider
the contour integral

1
(3) Iu (Z) 27‘i ; ( = E)R.(O dC» ne N!

where C, is a positively oriented rectangle with the vertices at the points
:t(mr+.1);t in. We suppose that the complex number z is not equal to any of the
poles of R, ({) and that n>|z|>0. Under these conditions there exists a natural
number N1 such that for every n> N, the only singular points of the integrand

~inside the contour C, are the poles {=0, {=z, {=+j,, (k=1, 2,...,n). The
following residues correspond to them:

2 . A (f; jv k) z
ResO= — vdt, Resj, ,= — 118 ,
es {f(t)t t, Resj, . FaUusslns) 727

L4

Resz=R, (@), Res(—Jy.0)= 72~ U ,](}")) o
d v+ vk vk

By applying the residue theorem we get

- 4 (f-. jv k) z
I (2)=R,(2)—- vdet+2 2
(Z) (2) If(t)t i) l-ljv.l Uv+1(}v.k) 2’—]3.;
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It can be proved that when the natural number n increases infinitely, I,(2)
vanishes. To this end it is enough for us to show that there exist a natural numbcr
N, and a constant M so that R, ({)| =M [{|'/, when { remains on any contour C,
for n>N,.

For cstlmating IR, ({)] we represent R, ({) in the form:

X 1
Trorvea  [roeuv,ea

= 0 X
@ RO Y e
Using the asymptotic formula ({ — oo, Jarg{|S<n—6, 0<d<n):
(&) J, Q)= V2/(=}) (cos ({—A)—sin (C—l)O(l/KI)')

we can estimate any one of the addends in (4).

First,” let us consider |R, ({)] along the vertical sides of the rectangle
C,:{=x(mn+A+in), —nSn<n. Because of the evenness of R,({) we can
consider only the right-hand vertical side. Let us denote

L,=sup|U;({)l, L,= sup |f(®).
Kl=1 tef0,1)

We receive consecutively:

/ "
' Tror venan 1©0f for u,gdn ke j @ U, @) dt
0 ___ o
U, - M@ Vz/uchq|1—.thq0(1/|c|)|

Depending on the value of v we can consider the following two cases: 1) v>0.
Then t'<|{|”" and therefore

” ”m
J U@ U, Qo desL,L,I{I™" ) de=L, L, ¢~ "%
o 0 :
! 1
2) v<0. Then v+1/2<1/2 so that [{|"*Y2<[{]'/2. Let L y= [|f(t)|t” dt. We get:
(]

nm 7]
{lf(t) U,(oie"dtsL, [ If@It dt<L,L,.
(V]

Let us note that chn=1 and there exists a natural number N, such that
L—=ithno(1/1XDI=1/ ﬁ for every n> N, . If we denote
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L= {I,L2 7, for v>0
L,L3 /n, for v=0 ’

we can conclude that

”m
| § £ U, (o) del
0
U,

Let us estimate now the second addend. We have:

SL[{*? for n>N,.

j’ O U, () de } f(®)t™ 2 (cos ({t —A)—sin ({t—2) O(1)) dt
Y — ua
U, (—=1) chn(1—ithn O (1/IC)

Knowing that |cos ({t—A)|Schn and |sin (Ct—'l))gchq we get that there exists
a constant L, so that :

1
| § f@)e U, (e) del "
i .0 §L4£|f(t)|t‘”2 dt for n>N,.

In analogous way for the horisontal sides of the rectangle C,:{={+in,
—nrn—AS{<nn+ 2, there exist positive constants P, Q and a natural number N,
such that for every n> N, the inequalities hold:

/K 1
T e UL ad | § £ U@ de
0 1K1
A N A

=0

1

Let us denote N,=max(N;, N,), -Ls=L f|f(®)le*?dt. Let n>N, and
0

M=2max(L, P, Q, L;). Let the point { is located on the contour C,. The

inequality |R,({)|<M [{]'/* holds.
Let now N=max(N,, N,) and n> N. Having in mind (3) we get for |I,(2)| :

1 . _
L= 4"1(; "’L';;;) T Mizl(nn+ 2)% +n2)V/4. The upper limit for |I,(z)] so
obtained, vanishes when n — co. Therefore
. _A(fiive) z?

s
R,(2)= (f(t)t*dt—2 T - - .
¢ {f() k=1 ]3.t Uys1Gy.x) 22—13.1‘
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The last to note is that the series on the right-hand side of the equality above is
uniformly convergent in every bounded domain which does not contain any of the
points +j, ;, tj, 2, £iv.3.---

Theorem. Let f(t) be a real-valued function defined and differentiable in the
interval [0, 1]. Let .

1
;‘[f(t)lt“"2 dt<oo, [If"(@®)lt™* dt<oco and f(1) % 0.
0 )

Then the function (1) has at most finite number non-real zeros and infinite number
real ones. Besides, (1) has only finite number multiple zeros. From a certain place on,
the zeros of (1) are separated by tj, .

Proof. Let f(z) satisfies the conditions of the Theorem. Let us denote:
6) Cok=A,(f; jv.x)Uvi 1y 2) .

It can be proved that from a certain place on, C,Cy,,>0. To this end let us
represent (6) in the form

/iy, k 1
[ f@r UG, de [ SOF UGy xt)de
0 + iy x

Uv+l(iv.k) Uv+l(iv.h)

and let us have in mind the asymptotic formula (5). After integration by parts and
using the denotations:

Cv.k=

Sy, k=f(l/jv.k)"v+ 1 (l),

Sy = } ('@t 2 =f (Ot~32 0 (1) sin(,, . t—A) dt,

Uy, &
we get
Yy x iy,
| f@Or U,G,.,t)dt Spe— § Jar1Guxt) (f@O—=(v+1) f(8)/t) dt
0 _ 0
Uve1Gv,x) =2 jo 12 (sin (j,, x— ) +cos (jy, s —4) O(1/j,, 1)
and
1
SO UG, t)dt . .
1”{,& (’ ' ) =f(1) Sin(iv.h_l)— \/.iv.kf(l/jv,k)SIn(l_l)_sv.t
Uyt1Gy.x) sin (jy, x—A)+c0s (v, x —4) 0(1/j,.4))

The functions f(t)t '/ and f(t)t~3/* are integrable in the interval [0, 1] so that
lim (f(£)t~'/2 )=0 and the function |f”’(f)—(v+1) f(t)t"!| is a bounded one; and

t—*
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as lim S, ,=0, lim (j, ,—(k+v/2—1/4) n)=0 so lim |sin(j, ,—vn/2—n/4)|=1.
kK=o . k- k=
Thcrefore, there exists a natural number N such that for every k>N we have.
sign C,,=sign f(1).
Let us consider again the equation (2). Let us denote

y= If(t)t' dt-2 £ A,(f: jot)Uys1 (v, k»jv.

k=1
It is obviously that |y <co. We have

A, IU,@=1=2 T C, e ~Fy)

k=1

Therefore, due to Lemma 1, the function A4, (f; z)/U,(z) has not more than 2N +2
non-real zeros. The other details of the proof follow from Lemma 1.

Thanks are due to Prof. Dr. P. Rusev for the interest shown and for his useful
recommendations.
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