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On Generalized Fractional g¢-Integrals

Mumtaz Ahmad Khan

Presented by P. Kenderov

The present paper deals with two generalized fractional g-integrals unifying the known fractional
g-integral operators due to W. A. Al-Salam [2], R. P. Agarwal [1}, M. Upadhyay [7],
FM.A.Khan [6] and W. A. Al-Salamand A. Verma 3}

1. Introduction

In 1951, A. Erdelyi [4] defined the operators of fractional integration:

(1.1 If=I[f(x); m, a n
- F’("m—)Jc"""""""'‘i(x"‘—u"')"1 u"f(u) du
and
(1.2) Kf=K[f(x): m, a n]

m

I'(a)

x"u_\?(u"‘-—x"')"l u~rmerml () du,

where a>0, m>0.
In 1974, the present author [6] defined g-analogues of the above operators in

the following form:

—g—ma+m—1x

mx
13) I = e [ (" —"q")e- 1 (0 d (£ 0D
( ) m.qf(x) rq(a) {( t'q ) ltf(t) ( q)

N N ©
mq "X j(tm_xm)a_lt-q—m-#m—lf([ql—a)d(t;q)
F@ &
where a #0, —1, —2,...
For m=1 (1.3) reduces to the following fractional g-integral operator due to
W.A. Agarwal [1]:

(1.4) K350 f (x)=
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x“nax

T, )I(x tq)q-1 "1 () d (¢; 9),

while (1.4) reduces to the fractional g-integral operator

(1.5) I3 (x)=

TN ®

(1.6) Kz ‘f(x)— T,Q) . f@=X)a-rt™17f(tq* ~*)d (5 9)

which is due to W. A. Al-Salam [2].
In 1975, W. A. Al-Salam and A. Verma [3] studied the following
operators:

x

(L7 da{f@}= G( )I x*—g*t* L W t* T () d (25 9)

——hp e = w8
j=0 (h)j h

and

(1.8) L {f@)}= 1—-9G,@ i

where h=¢* and G,(@)=T_(a).

These operators differ from those defined in (1.3) and (1.4), since the products
in the integrands of these operators advance in powers of g* unlike in powers of ¢
in the operators (1.3) and (1.4).

It may be noted that inspite of the fact that the operator (1. S)isa partlcular
case of all three operators I [(a); (b); z,n:f(x)]of M. Upadhyay[7], ,l:; {r(v)}
of W.A.Al-Salamand A. Verma [3] and I};% f(x) of M. A. Khan [6], yet all
these are three extensions of (1.5) unconnected with each other. Similar remarks
are applied to the operators K [(@); (b); z, n:f(x)] of M. Upadhyay [7] and
KL%f(x) of M. A. Khan [6] which contain the operator (1.6) as a common
particular case. This led the author to unify the known fractional g-integral
operators. The present paper deals with a study of two such unified operators. The
results obtained here generalize those obtained by M. Upadh yay[7] and by the
present author [6].

The following definitions and notations will be used further in this paper:

(1.9) [a]=(1—g*)/(1—q), .
(1.10) (@ )=01—g"X1—g"*")...(A—q"*"""); (¢*)o=1

@; xT_ 2 (@1).(8"2),-.-(@"4),x"
111) 0F - (q°2), ,
. g [(b)’ ] n§0 (9).(d°1),(¢°2),..-(@"8),’ Ixl<1,

R et At ] ™31 1) d (¢ @)

(1.12) T, (@)= g—-‘%ﬁ;‘.( #0, —1, =2,..),
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(1.13) If(t)d(t q) =x(1—9q) z q"f(xq")

) n=0

(1.14) If(t)d(t 9=x(1—-9q) = q7"f(xq™"),
n=1

(1.15) If(t)d(t 9=>1-9q) E_ qTf(q)

We shall also use the following Heine’s theorem:

(1—4°2) 1
(-2, -2,

(1.16) Dolg®; — 7=

2. Unifying operators

We now introduce the following generalized fractional g-integral operators:
2.1) Il@); ®) o Az wn:fx)] -

= . A u
e

= (n+1)A ' (a); w*z*q**
*§°qk 8 [(b);

(22 K, [@); ®) o & z m-n:f()]
[(a): CD)‘ z* X”/t"
)

f(xq*).

n1+1—1q—ql—1+1m 1-a § 3
t~™1-2 oY
() £ 4

b4

f@®)d(t;q)

= ; qg(,,;,+1_1)“d)gl)[§;; (/) z“q*#'f"' f(xq—l—l).
k=0

Particular cases (i): For A=p=w=1, (2.1-2) reduce to the following
operators due to M. Upadhyay [7]:

23) L[(@); ) z n:f(X)]

-n—1x

[ @9 (@) (b); 2t/x1f())d (t:9)

x
T

= T gD oP[a) ) ¢l (xg")

k=0
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.and
249 K, [(a): () z n:f(x)]

. xl’ =N o
-3 3 ] fe 17 P [(a): (b): zx/elf (1) d(¢;q)

— T M OPIa) G 2 (gt ),

k=0
(i) For A=1, uy=m, w=¢*"!, B=0, A=1, a,= —a+1 and z=¢, we get

m(1—q)
r,

-p—-1x —¢+1’. +¢—ltl|x-
i jz",oo[f_ ;"' / ]f(z) d(;q)

mx—q-m-l'u—l x

=—-qu-£t'(x"‘ q"t").-xf(t)d(t 9
=I5 (x)

Ll-a+1; "% 1 q.m, n; f(x)]

which is (1.3).
(i) For A=, w=1, B=0, A=1, a= —a+1, z=¢" we get by setting h=g?,

(1-h) e a1 2 —
G ( ) I‘[— l,' ) ln A- q‘v ‘w ’I'f(X)]

—-nia-2 1—h h—c+l a .
T e[ T o

1—h)x~m4-4x _ hoet1; g1 gd i
=((l—¢:;G,,(a) {‘““ 1100[_ - AL ]f(t)d(t;q)

(l h)x nA—-2 x

= T=—oG@ )W e/ 0 dE

= = {f(®)}
which is (1.8) ‘
(iv) ForB=0,A=1,a,=—a+1,A=1, y=m, o=g*"!, z=1 and f(x) replaced b
f(xq*~*), (2.2) reduces to (1.4). 4
A study of these fractional g-integral operators is expected to be useful in the

development of the g-function theory, playing an important role in oombmatory
analysis.
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3. Some elementary properties

The following formal properties of the generalized fractional g-integral
operators (2.1) and (2.2) can be easily obtained: '

(3.1) x*I [@); b) A iz pn:f )]
=1 (@) () 4 @;z p n—c:x*f(x)]
(3.2) x*K, (@) () 4 @;z, 5 n:f(x)]
=K, [@; () L o;z p n+c:(xg S
(3.3) if If(x)=g (x), then If(Ax)=g (Ax),
(3.9 if K f(x)=g (x), then K f(Ax)=g (4x).

The last two equations express a homogeneity of the operators. They show
that given a function f(xy) there is no difference whether the operators are applied

with respect to x, y or to @w=xy.

4. ¢-Mellin transforms of (2.1) and (2.2)

Theorem 1:If I |g"f(q")l converges, lq|<1,

Re (1)>0, |w*z*|<1 and Re(nA+1—s)>0, then
(4.1) M {I[(a); (b): A iz r:f (69));
h“).' A+A—.|.. "z"
={1 —gntimeaytl 1D 1["(5) . ::A+A+p-::) ]Mq {/(x)}

where both in the numerator and the denominator of the ‘“bibasic” series on the
right, the terms before the colon are on the base h=gq* and those after it are on the
base q* and the g-analogue of Mellin transform of f(x) is defined as

M= | © s g
0

Proof: M, {I,[@:; ) 4 o z, g n:f ()]
= 1 T —1-9i-24 t A+a-1 h) (a); w‘z't“/x'] d: Y
(1—9) {x' {2‘” A8 [(b); @) d (9} d(x;9)

@® . A
s £ goemn o0 7 frenaeio
k=0 )

Otwm §
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=(1—g) T T ; gH+D

r=—a k=0

[(a): ot z* g+

+k
) @)

=(1—gq) g *f(q") ; ‘I""'““",.@L")[(“)’ w*z* qtn]

n=-o k=0 (b);
T iy 2 [9)0M g 2
=(1—gq) quxu 2 ');E:o ) -__mq"'f(ti')

5 W 5 (ml+1-s+,.j)m -1
= @, ST f 2@ de: g

- [A?] ; w? z#
- JEO (r),[K®],01 —grrr e {769}
1 © [h@ ]} @ I (gnA+a=s ), g

= ( __qnlﬂl-: ) s (h)l[h(b) ]l(qu+4+n—x )j' o Mq {f(x)}

o h(ﬂ)_-qu+l—s’. w*z*
={l_qq1+l l} 14+1¢B+1 h(b).'q"‘+)'+‘_‘.' ]Mq{f(x)}.

This proves the theorem.
Proceeding as above, we have

Theorem 2. If X |q”f(q") converges, |q|<f, Re(u)>0, |w*z*|<1 and

Re(nd+A+s)>1, then
4.2) M {K [(a); (b) A o;z p n:f(x)]

h(a): qq1+l+l—l.

P wtzh "]
=q‘{1 —q"‘+l+.-l }_l4+1¢3+1[h(5): q'll"'l"'l"'ll—l. q“]Mq {f(X)},

where in the numerator and the denominator of the “bibasic” series on the right, the
terms before the colon are on the base h=q* and those after it are on the base q".

Particular cases of Theorem 1 and 2. We now consider certain
particular cases of Theorem1 and 2 (in the form of Corollaries): (i) Setting
A=p=w=1 in Theorems 1 and 2, we have

Corollary 1. If X |q”f(q")l converges, |g|<1, |z|]<1 and Re(n—s)> —1
then e
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43) M {I,[@); B) zn:feN=(1—g"* )-*mw.‘m[‘“" =5 ’]

| ), n+2—s;
x M, {f(x)}.

and

Corollary 2. If T |qf(q")| converges, |gl<1,|zl<1 and Re(n+s)>0 then

r=-—ao

@4 M {K[@): ©®) z n: SN} =q1—4""""")a+1Ps+ 1[(0)' no+a; zq]

b)), n+s+1;
X Mq {f(X)}-

(i) ForA=1,a,=—a+1,B=0,A=1,u=m, z=1,w=¢*"! and f(x) replaced by
f(xq'~*) in Theorem 2, we get .

Corollary 3. If X |q”f(q")| is convergent, |q|<1, m is a positive integer,
Re(n—s)=—1 and Ii;(_aa)o>1 then
. "l(l _q) ql—¢: ql +q—s’. qm+¢—1
(4'5) Mqu,k. qf(x)= (1 _q1+;,—g)r'q(a) (D[q: ql +q—s+n'. Mq {f(x)}

where in the numerator and the denominator of the “bibasic” series, the terms before
the colon are on the base q and those after it are on the base ™.
Similarly, from Theorem 2, we have

. .
Corollary 4. If '_2_3 |g”f(g"~*)| is convergent, |q| < 1, m is a positive integer,
Re(n+5)>0 and Re(x)>1, then

PN 1 Ul NP L q~+=-1] .
(4.6) Mq K:'n. qf(x)_ (1 _q"+:) rq (a) q’[q: q,,+s+m.. Mq {f(xq )},

where in the numerator and the denominator of the “bibasic” series, the terms before
the colon are on the base q and those after it are on the base q™.

Results (4.34) are due to M. Upadhyay [7], while (4.5-6) are due to the
author [6].

5. Fractional integration by parts

Theorem 3.If T |g™*f(¢ ) and I |g~"™**"Vg(q")| areconvergent,

lgl<1, Re(#)>0, |w*z*|<1 and Re(yA+2)>0, then
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5.1) Zf(x) K,[@: ®) 4 o p n:g(1d(x: @)

= { g(xq~ ") I [(@): By A ; zq, w; n:f(x)]d(x; )

Proof.

Ef(x) K, (@) ®) % o 2 n:g(d(x g

® A +n
—a-0 I _a@) E gm0 T ]g(q'-' )

—a-0 E soah) T penop] O ST e

R=—00 k=0 (b)'

= [g(xq~*) I [(a; B) A w; zq, w; n:f(x)d(x; q)

-]

which proves the theorem.

Particular cases of Theorem 3.
(i) For A=w=p=1, (51)) reduces to the following:

Corollary 5. If'_gw lg®**f(q" ) and z la~"™g(q" )| are convergent, |q| <1,
|2l <1 and Re(n)> —1, then e
(52) zf(x) K, @) ®) zn:9(1d(x, @

= [g(xq~*) I [(a); (b) zg,n:f(x)]d(x; q)

o

(i) FordA=1,u=m, z=1,0=¢*"!,B=0,4=1, a, = —a+1 and g(x) replaced by
g(xq'~*), (5.1) yields '

Corollary 6. If E Iq""“’f ()| and 2 la"™g(q""*)| are convergent,
lal<1, m is a positive integer Re(m)>—1 and Re(a)>l then

(5.3) { Sx)KE%g(x)d(x; @)= I g(xq~*) I%%f(x) d(x; q).
) )

(iii) For A=p=z=1, =¢""*, B=0, A=1, a,= —a+1, (5.1) becomes
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-] @
Corollary 7. Let X |g"*Vf(g") and X |q7™ g(q")| are convergent,
ll<1, Re(@)>1, Re()> —1 then -

(5.4) :ff(x) Kieg(d(x; 9= | g0~ )T () d(x: g)
| A

The result (5.2) is due to M. U pad hyay[7],(5.3) is due to the author [6] and
(5.4) is due to R. P. Agarwal [1].
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