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Presented by Bl. Sendov

L. Iliev proved that if sequence (a,)7=o€a then following inequalities hold:

az'—au-lal+l;0 n=1, 2,...
ai—a,_,a,,,20 n=2, 3,...
Gr=3y2_ (" 23<0 n=3, 4, 5..., a,#0.

a,
In this paper we give a gencrahzatlon of these inequalities and we will show
that first inequality implies other.

1. Introduction

The sequence (a,)F-o belongs to class a« if for any polynomial
b(z)=by,+b,z+ ... +b,z" which has only real zeros, the polynomial bz) * (a,)
=boao+b1 a z+... +b,,a,,z" also has only real zeros.

We know some simple properties of sequence (a,),.

(i) If (a,),€% a,#0 and a,,,#0 then a,,,#0 for all k=0, 1, 2,...,u and
either they have same signs or form alternative sequence.

(ii) For (a,),€a following inequalities are valid:

1) a2—a,_,a,,,20  n=1, 2,...
(2) az"‘a,'_za'...zz‘o n=2, 3 e
3) (“';1‘1’)2 (“" 23<0 n=3, 4, 5...,a,%0

(iii) If (@ =o€ and (a,,),,,,oea then (a,a;)?-o€x and (a,)7=,€0.

2,
Here, we shall prove the following result.
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Theorem 1. Let (a,)%-0€%, a,#0 for all neN. L et x,, y, be integers, p; real,i=1,
2..nand X, ZX, 2 ... 2%y, Y12V 2Z -+ Y

@ I |a, IPr2 IT |a, |Pr
r=1 r r=1
is vaiid if and only if

®) ; k
T px=Z py k=12..n-1
r=1 r=1
(6) n n
and Z px=2Z py,.
r=1 r=1

Proof. Let y,= —In|a,|. From (1) is obviously that (y,), is convex sequence.
By the Majorization theorem, [2], conditions (5) and (6) are equivalent to
inequality

L pfG)S E pSB)

r=1 r=1

where fis any convex function. But, if (y,), is convex sequence then function f
whose graph is the polygonal line with corner points (n, y,), n€N, is convex on
[1, o0), [4], and we have

Z pY,=Z Py,
r=1 r=1 )
This ineqpality is equivalent to (4). [ |
Specially, if we put p, =q—p, P2=T—q X} =X, =, y, =¥, y,=p Where p, g, r
are integers and 1 <p<g<r then we have
) la P2l "% la "
Ifg=n, p=n—i, r=n+i then (7) becomes
a2 = ay- ' 1an+d*
ie alZa,1ay4y

what is the generalization of (1) and (2).
If r—q=2k then (7) becomes

|fz|2t§|a'_"z’£|'-r

a

r (4

and for k=1, r=n and p=n—3 we get inequality (3).
'If r—p=2k then from (7) we have

| =2 pr-a ) Sq g
a, a

r
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and for k=2, r=n and g=n—3 ‘we have
=Y — (=250
al al
what is some kind of generalization of inequality (3).
If we put p, =p,=1,x,=n+k, x,=n—k, y,=n+k+1, y,=n—(k+1), k=0,
1, 2,...,n—1 then from Theorem 1 we can get following inequality sequence:

2
0220, 10,4120y 20,422 ... 20—k Gp4xZ - 2022 00-

3.
Of course, we can use some other results for convex sequences. For
example, [3]:

If (y,), is convex sequence then inequality Xj., p;7,20 holds if and only if p,
are real numbers which satisfy following conditions:

®) z p=0, X ip;=0
i=1 i=1

) T (i—k+1)p,=20 k=3,4,...,n
i=k

In the term of sequence (a,), we have the following statement.

Theorem 2. Let p,, P3,-..- P, be real numbers. The inequality ITj., |afP1<1
holds for every (a,),€a if and only if p, satisfy (8) and (9).

1 1
Specially, if we put pz,‘+1=m(k=0, 1,...n), pu= —;,(k=l, 2,...,n) then

we have

Jlasa,...a212 "“Jla,ay...82044l.

(Note that is Nanson’s inequality, [4], applied on sequence y,= —Inja,)

4. Remarks

Condition (a,#0, VneN,) can be replaced by (a,#0, for nel) where I={k,
k+1, k42,....k+1}, k, leN,.

5. Application

Let fy(z)=b, z™eM I, (1 +-:—) be entire function where z,>0 for neJ,,
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1
b,eR, m,eN,, 4,20 and Z,e,lz—<oo, and let x, 20, k=1, 2,...,s.

n
Then we can define following functions:

0U0= T fitmd)= £ 0(x,...x)
n=0 ni

k=1

R®(z)= ﬁ fi(x,2) fI f,‘(x,+z)=; R,(x;,...x)—
= n=0

k=1 k=p+1

59 (z)= m L +2)= 5 S,(xl,...x,)g'
=0 H

k=1 »

L. Iliev, [1], proved that sequences (Q,(x,,...x),, (R(x,,...x,), and
(S.(xy,...x)), belong to class a and for these sequences hold all previous

inequalities. For example:
02(xyse e X)ZQuoi(Xysee. %) Quai(Xys... )
1Q5 P (%, XM ZIQS Xy X)) Q8P (xy, ... %)
Qu-(X3s0 00 %) Opan(Xg5.- - X)Z Oy (Xg,...%) Quii(%4,...%) k<i.
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