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Separation Properties at p for the Topological Categories
of Reflexive Relation Spaces and Preordered Spaces

Mehmet Baran

Presented by P. Kenderov

In [1] and [2] various generalizations of the scparation properties are defined for arbitrary
topological category over scts. In this paper, an explicit characterization of each of the tion
properties Ty, T, Pre T,,and T, at a point pis given in the topological categories of Reflexive Relation
S and lgreordcred Spaces. Moreover, specific relationships that arise among the various T, Pre

",, and T structures at p are cxamined in these categories.

1. Introduction

The notion of topological space has been generalized to include convergence
spaces, limit spaces, bornological spaces, and preordered spaces, by
H. Herrlich [3], D. C. Kent [4], O. Wyler [9}, L. D. Nel, Bentley,
F.Sch warz[8],among others, to the notion of a topological category. There are
a number of equivalent ways to describe topological categories, for example, in
terms of the existence of initial lifts of certain sources, H.Herrlich[3]orin terms
of functors to the category of complete lattices, O. Wyler [9]. If one wishes to
study the extent to which theorems in general topology can be formulated and
proved in the more general setting of a topological category it is necessary to
reformulate first certain basic concepts in terms of concepts which make sense in
any topological category e. g. in terms of initial lifts, final lifts, and discreteness.

Some basic concepts in general topology are the notions of separation (T,
T,, T,, T, T,) which appear in many important theorems such as the Urysohn
Metrization theorem, the Urysohn Lemma, the Tietze extention theorem, among
others. In view of this, it is useful to be able not only to extend these various
notions to arbitrary topological categories but also to have a convenient
characterization of them in certain topological categories of interest.

Let E be a category and Sets be the category of sets.

1.1. Definition. A Functor U :E—Sets is said to betopologicalor Eisa
topological category over Sets iff the following conditions hold:
1. Uis concrete i. e. faithful (U is mono on hom sets) and amnestic (if U(f)=id and
f is an isomorphism, then f=id). ~
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2. U has small fibers i. e. U~ !(b) is a set for all b in Sets.

3. Forevery U-source, i.e. family g, :b—U (X)) of maps in Sets, there exists a family
fi:X-Xin Esuch that U(f)=g,and if U(h, : Y- X)=kg, :UY—>b—U(X), then
there exists a lift k :Y—=X of k :UY—-UX . e. U(k )=k. This latter condition
means that every U-source hasaninitial l1ift. Itis well known, see [3], p. 125 or
[6], p. 278, that the existence of initial lifts of arbitrary U-source is equivalent to
the existence of final lifts (the dual of the initial lifts) for arbitrary U-sink.

1.2. Definition. The Category of Reflexive Relation Spaces,
R Rel has as objects the pairs (4, R) where R is a reflexive relation on the set A and
has as morphisms (4, R)—(4 ,, R,) those functions f : A— A4, such that if aRb, then
S(@R ,f(b) for all a, bin A. R Rel is a topological category over Sets. See [1] p. 9.

1.3. Definition. The Category of Preordered spaces, Prordis the full
subcategory of R Rel determined by those spaces (4, R) where R is a transitive
relation. Prord is a topological category over Sets. See [5], p. 531 or [7], p. 1374.

1.4. The discrete structure (4, R) on 4 in R Rel and Prord is given by aRb iff
a=b, for all g, b in A. [1], p. 12.

1.5. Asource {f; :(4, R)—=(4,,R), iel}isinitial in R Rel and Prord ifffor all a,
bin A, aRb iff f,aR,fb for all i. See [7], p. 1373 and [1], p. 13.

1.6. An epi morphism f:(4,, R,)—(4, R) in Prord is final iff for all a, b
in A, aRb iff there exists a sequence g;, i=1, 2,...n of points in A4, with
a=a, Ra,R...Ra,=b such that for each k=1,...n—1, there is a pair c,, ¢;,, in
A, such that f(c,)=a,, f(Cx+1)=ax+1 and ¢, R, ¢y +,. [7], p. 1373.

1.7. An epi morphismf :(A L Rl)—b(A, R) in R Rel is final iff for each pair a, b
in A, aRb holds in 4 precisely when there exists c, d in 4, such that cR, d and
f(c)=a and f(d)=b>b.

Anepisink {i,,i, :(4, R)—(A4 ,, R,)} isfinal in R Rel iff for each pair a,bin 4,,
aR, b iff there exists a pair ¢, d in 4 such that cRd and i,(c)=a and i, (d)=b for
some k=1, 2 [1], p. 15.

Let X be a set and p a point in X.Let Xv, X be the wedge product of X with
itself, i. e. two distinct copies of Xidentified at the point p. A point xin Xv, X will
be denoted by x, (x,) if x is in the first (resp. second) component of Xv,_ X. Let
X2=X x Xbe the Cartesian product of X with itself.

1.8. Definition. The principal axis map, 4, :Xv, X—X? is defined by
A, (x)=(xy, p) and 4,(x,)=(p, x;)-

1.9. Definition. The skewed p axis map, S, :Xv,X—X? js defined by
S,(xy)=(x,, x;) and S,(x,)=(p, x,).

1.10. Definition. The fold map at p, V, :Xv,X—Xis given by V,(x)=x
fori=1, 2.

Let U :E—Sets be a topological functor, X an object in E, and p a point in
UX=B.
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1.11. Definitions
1. Xis T,at p iff the initial lift of the U-source {4,:Bv,B—U(X?=B? and
V,:Bv,B—»UDB=B}is discrete, where DB is the discrete structure on B.
2" Xis ¥/ at piff the initial lift of the U-source {id :Bv,B~U(XV,X)=Bv,Band
V, :Bv, B—»UDB= Blis discrete, where Xv, Xis the wedge in Ei.e. the final lift of
the U-sink {i,, i, :UX=B—Bv, B} where i‘, i, denote the canonical injections.
3. Xis Pre T, atpiff the initial fife of the U-source {S,:Bv,B—U(X?)=B?} and
the initial lift of the U-source {A4,:Bv,B-U(X?)= B’} agree
4. Xis T, at p iff the initial lift ‘of the U-source {S,:Bv »B-UX 2)=B? and
V,:Bv, B—»UDB B} is discrete.
5. Xis Pre T’ at piff the initial lift of the U-source {S, :Bv, B»U(X?)=B? and
the final lift of the U-sink {i,, i, :UX =B—Bv, B} agree.
6. Xis T, atpiff Xis T, at pand Pre T, atp
7. Xis T, atpiff Xis T atpandPreT at p. See [1], p. 19 or [2].

1.12. Remark. We define p,, p,, V,, by 1+p, p+1, 1+1:Bv,B—B,
respectively where 1 : B— Bis the identity map and p : B—Bis constant map at p.
Note that =, ,-—pl—nl S,, m; A,=p,, n,S,=V,. Furthermore, when showing
A? and S, are initial, it is suﬁ'1c1ent to show that fp and p,) and (p, and V,) are
initial llfts, respectively. See [1] p. 22.

2. Separation Properties at p

In this section, we give explicit characterizations of the generalized
separation properties for the topological categories of Reflexive Relation Spaces,
R Rel and Preordered spaces, Prord.

2.1. Definitions. Let R be a relation on a set B and peB. R is said to be
antisymmetric at p iff for xeB, if xRp and pRx, then x=p. R is said to be
symmetric at p iff for all xeB, if xRp, then pRx and pRx, then
xRp. Rissaidtobetransitive atpiffforall x, yeBif xRp and pRy,
then xRy, if pRx and xRy, then pRy and if xRy and yRp, then xRp.

2.2. Theorem. X =(B,R) in R Rel or Prord is T, at p iff R is antisymmetric at p.

Proof. Suppose Xis To atpi.e. by 1.4, 1.5, 1. l2foranypa1ru,omthe wedge,
Py uRp, v, p, uRp, v, and Vu= Vv iff u=v. We will show that R is antisymmetric at p
i. e. iff x Rp and pRx, then x=p. Note that Py (x, P)Rp , (p, X)=xRp, p,(x, P)Rp, (P,
x)=pRx, and V (x, p)=x=V (p, x). Since Xis T, at p, (x, p)=(p, x) i. ¢. x=p. Hence
R is antisymmetric at p.

Conversely, suppose R is antisymmetric at p. If u=v, then clearly p, uRp, v,
p, uRp, vand Vu=Vv. It remains to show that if p, uRp, v, p, uRp, v, and Vu=Vy,
then u=v. Since Vu= Vv, u and v have the form (x, p) or (p, x) for some x. If u=(x, p)
and v=(p, x), then p, uRp, v=xRp, p, uRp, v=pRx, and thus, by the assumption,
x=pi. e u=v. If u=(x, p) and v=(x, p), then u=v. Therefore X is T0 at p.
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2.3. Theorem. X =(B,R) in RRel or Prord is T, at p iff R is discrete at p . e. if
xRp or pRx, then x=p.

Proof. Suppose Xis T, at pi.e. by 1.4, 1.5, and 1.12 for all pairs u and v in the
wedge p, uRp, v, VuRY, and Vu=Vv iff u=v. If xRp, then p, (x, P)Rp, (p, x)=xRp,
V(x, p)RV(p, x)=xRxand V(x, p)=x=V(p, x). Since Xis T, at p, it follows that (x,
p)=(p, x) i. e. x=p. Similarly, if pRx, then x=p. This shows that R is discrete at p.

On the other hand, suppose R is discrete at p. We must show that Xis T, at p.
If u=v, then p, uRp, v, VuRVv, and Vu= Vv since R Rel and Prord are reflexive. If
p, uRp, v, VuRVv, and Vu=Vy, then u, v=(x, p) or (p, x) for some x. If u=(x, p) and
v=(p, x), then p,uRp,v=xRp and VuRVv=xRx and Vu=x=Vv. Since R is
discrete at p, x=p i. e. u=v. Sjmilarly, if u=(p, x) and v=(x, p), then u=v. If
u=(x, p) and v=(x, p), then u=v. Therefore Xis T at p.

2.4. Theorem. All X=(B, R) in RRel are T, at p.

Proof. Xis T at p means, by 1.4, 1.5, 1.7, and definition 1.11, for each pair u
and v in the wedge, Vu= Vv and there exist xand yin B such that xRyand i, x=u
and i, y=v for some k=1 or 2 iff u=v. If Vu=Vy, then u, v=(x, p) or (p, x) for
some x. If u=(x, p) and v=(p, x), then clearly x=psince i, x=uand i, y=vfor some
k=1 or 2. Similarly, if u=(p, x) and v=(x, p), then x=pi. e. u=v. Hence we must
have u=(x, p)=v or u=(p, x)=v.Ifu=v then Vu=Vvand i, x=u=vforsome k=1
or 2 and for some x in B (since xRx).

2.5. Theorem. X =(B, R) in Prord is T at p iff R is antisymmetric at p (2.1)

Proof. Supose Xis Ty at pi.e. by 1.4, 1.6, 1.5, and definition 1.11 for each pair
u and v in the wedge, (a) Vu=Vv and if u and v are in different component of the
wedge, then there exist xand yin Bsuch that xRp and pRy with i, x=uand i, y=v
for some k, n=1 or 2 and k#n, and if u and v are in the same component of the
wedge, then there exist xand yin Bsuch that xRyand i, x=u and i, y=v for some
k=1 or 2iff (b) u=v. We must show that R is antisymmetric at p. If xRp and pRx,
then i, x=(x,p), i, x=(p, x) and V(x, p)=x=V(p, x). Since Xis T, at p, (x, p)=(p, x)
i. e. x=p. Conversely, suppose R is antisymmetric at p and condition (a) holds. We
must show that (b) holds. If Vu= Vv, then u and v have the form (x, p) or (p, x) for
some x in B. If u=(x, p) and v=(p, x), then it follows from (a) that xRp, pRx and
i, x=u, i, x=v since u and v are in different component of the wedge. By the
assumption that R is antisymmetric at p, we get x=p. Similarly if u=(p, x) and
v=(x, p), then x=p and consequently u=v. Clearly (b) implies (a) since Prord is
reflexive. Therefore X is T at p.

2.6. Theorem. X =(B, R) is Pre T, at p iff R is symmetric at p (2.1) for X in
Prord, and both symmetric and transitive at p (2.1) for X in R Rel.

Pro of. Suppose Xis Pre T, at pi.e. by 1.5, and 1.12 for any pair u and vin the
wedge, if p, uRp, v, then p, uRp, v iff VuRVv. We must show that R is symmetric at
pif Xis in Prord and R is symmetric and transitive at p if Xis in R Rel. If xRp, then
P, (x, P)Rp, (p, X)=xRp and V(x, p)RV(p, x)=xRx.Since Xis Pre T, at p, it follows
that p, (x, p)Rp , (p, x)=pRx. Similarly if pRx then xRp. Hence R is symmetric at p.
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Further, if X is in RRel and xRp and pRy, then p,(x, p)Rp,(p, y)=xRp and
p2(x, P)Rp, (p, y)=pRy. Since X is Pre T, at p, V(x, p)RV(p, y)=xRy.If pRx and
xRy for some x, y in B, then by the result of the first part, xRp (since we have
already proved that R is symmetric at p). Note that p, (x, p)Rp, (p, y)=xRp and
V(x, p)RV(p, y)=xRy. Since X is Pre T, at p, p,(x, p)Rp,(p, y)=PRy.

On the other hand, suppose R is symmetric at p for X in Prord and both
symmetric and transitive at p for Xin R Rel. We must show that Xis Pre T, at p.
We consider various possibilities for u and v, namely, u=(x, p), (p, x) or (p, p) and
o=@, p), (@ ) or (p, p). If u=(x, p) and v=(y, p), then if p, uRp, v=xRy, then
p,uRp, v=pRp iff VuRVv=xRy. If u=(x, p) and v=(p, y) then if p, uRp, v=xRp,
then p, uRp, v=pRy iff VuRVo=xRy (since R is symmetric and transitive at p). If
u=(x, p) and v=(p, p) then if p,uRp,v=xRp, then p,uRp,v=pRp iff
VuRVo=xRp. If u=(p, x) and v=(y, p), then p, uRp, v=pRy, then p, uRp, v=xRp
iff VuRVv = xRy since R is symmetric and transitive at p. Similarly, if (u=(p, x) and
v=(p, y) or (p, p)) or (u=(p, p) and v=(v, p), (p, y) or (p, p)) then the Pre T,
condition holds. This completes i proof.

2.7. Theorem. X=(B,R) in RRél Is Pre TR @ g Ui R is discrete at p.

Proof. Suppose Xis Pre T3 at pi.e. by 1.4, 1.5, and 1.12 for each pajruand v
in the wedge (a) p, uRp, v and VuRVy iff (b) there exist x and yin B such that xRy
and i, x=u,i, y=vfor some k=1 or 2. We will show that if xRp or pRx, then x=p.
If xRp, then p, (x, p)Rp , (p, X)=xRp and V(x, p)RV(p, x)=xRx.Since X is Pre T, at
p, it follows that x=p. Similarly if pRx, then x=p i. e. R is discrete at p. .

Conversely, we will show that if R is discrete at p, then Xis Pre T; at pi.e.and
(b) above are equivalent. By [1], (b) implies (a) since R Rel is normalized (a). It
remains to show that (a) implies (b). To this end we consider following cases for u
and v: u=(x, p), (p, x) or (p, p) and v=(», p), (P, y) or (p, p). Hu=(x, p) and v=(y, p),
then p, uRp, v=xRy=VuRVv.Clearly i, x=uand i, y=v.lfu=(x, p) and v=(p, y),
then p,uRp,v=xRp and VuRVv=xRy. Since R is discrete at p, x=p and
consequently, i, p=(p, p)=u and i, y=(y, p)=v. If u=(x, p) and v=(p, p), then
p, uRp, v=xRp=VuRVy. Clearly i, x=uand i, p=(, p)=v. Hu=(p, x)and v=(y,
p), then p,uRp, v=pRy and VuRVv=xRy. Since R is discrete at p, y=p and
consequently, i, x=u and i, p=v. Similarly, if u=(p, x) or (p, p) and v=(p, y) or
(p, p), then clearly the Pre T condition holds. This completes the proof.

2.8. Theorem. X =(B, R) in Prord is Pre T at p iff R is symmetric at p.

__Proof. Suppose Xis Pre T, at pi.e. by 1.6, 1.5, and 1.12 for each pair u and v
in the wedge (a) if u and v are in the different component of the wedge, then there
exist x and yig v such that xRp and pRy, i, x=u, and i, y=v for some k, n=1 or 2
and k;.én and if u and v are in the same component of the wedge, then there exist x
and yin B such that xRy,i,x=u, and i, y=0 for some k=1 or 2 iff p, uRp, v and.
VuRVv. We must show that R is symmetric at pi. e. if xRp or pRx, then pRx or xRp.
If xRp, then p, (x, p)Rp, (p, X)=xRp and V(x, p)RV(p, x)=xRx. Since X is Pre T
at p, it follows that pRx (since i, x=(x, p), i, x=(p, x), and xRp). Similarly, if pRx,
then xRp. Hence R is symmetric at p.

On the other hand, suppose R is symmetric at p. We will show that Xis Pre TS
at p i. e. (a) and (b) above are equivalent. By [1] (a) implies (b) since Prord is
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normalized. It remains to show that (b) implies (a). To this end we consider the
following cases for u and v :u=(x, p), (p, x), and (p, p) and v=(y, p), (p, y), and (p, p).
If u=(x, p) and v=(y, p), then p, uRp, v=xRy=VuRVy. Clearly, i, x=u and
i, y=v.Ifu=(x, p) and v=(p, y), then p, uRp, v=xRp and VuRVv=xRy.Since R is
symmetric at p, pRx. R is transitive implies pRy since pRx and xRy. Hence we have
xRp and pRy with i, x=u and i, y=v. If u=(x, p) and v=(p, p), then p,uRp,v
=(x, p)=VuRVv. Clearly, i, x=u and i, p=v. If u=(p, x) and v=(y, p), then
Py uRp, v=pRy and VuRVv=xRy. Since R is symmetric at p, yRp. Hence by
transitivity of R, xRp and consequently, i, x=u and i, y=v. If u=(p, x) and
v=(p, y), then p, uRp, v=pRp and VuRVv=xRy. Clearly, i, x=u and i, y=v. If
u=(p, x) and v=(p, p), then p, uRp, v=pRp and VuRVv=xRp and clearly i, x=u
and i, p=v. Similarly, if u=(p, p) and v=(y, p), (p, y) or (p, p), then i, p=u and
i, y=0, p) i,y=(p, y) or i,p=(p, p) for some k=1 or 2. Thls shows that X'is
Pre T) at p.

2.9. Theorem. X=(B,R) in RRel or Prowd is T, at p iff R is discrete at p.

Proof. Combine 2.2, 2.6, and défiriiion 1.11. Note that if R is antisymmetric
at p and symmetric at p, then 1t is discrete since if xRp, then by symmetry at p, pRx
and consequently, by antisymmetry at p, x=p. Similarly, if pRx, then x=p.

2.10. Theorem. X=(B, R) in RRel is T at p iff R is discrete at p.
Proof. Combine 2.4, 2.7, and definition 1.11.

2.11. Theorem. X=(B,R) in Prordis T atpiff Ris disaeée at p.

Proof. Combine 2.5, 2.8, and definition 1.11 and note that if R is
antisymmetric and symmetric at p, then it is discrete at p.

2.12. Remark. In Prord, both T, and T} at p, Pre T, and Pre T at p, and
both T, and T at p are equivalent. T, atpandPreT atpunplyT at p and Pre
T, at p, respectively in R Rel and both T, and T; at p are identical in R Rel.
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