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On Hadamard’s Inequalities for Convex Functions

Sever Silvestru Dragomir

Presented by P. Kenderov

Some refinements of the well-known Hadamard’s inequalities for convex functions are given.

1. Introduction
Let f:1 = R — R be a convex function on interval I and a, bel with a<b.
The double inequality:

b b
B N5 - rwaxsTOHO

is known in literature as Hadamard’s inequalities. We note that, J. Hadamard was
not the first who discovered them. As is pointed out by D. S. Mitrinovi ¢ and
I. B. Lackovi ¢ [9] the inequalities (1) are due to C.Hermite who discovered
them in 1883, ten years before J. Hadamard [5].

In this paper we will give some improvements of this classic fact.

2. The main results

The following refinement of the first inequality in (1) holds.

Theorem 1. Let f be as above and a, B :[a, b] = R, be two continuous mappings
so that a(x)+p(y)>0 for all x, y in [a, b] Then one has the inequalities

T 1 ,a(x)x+ﬂ(y)y\ B(yx+a()y
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Proof. The Jensen’s inequality for double integrals yields that

+ y\ +y
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which shows the first inequality in (2).
By the convexity of fon [a, b] one has:

a()x+BOYy . . BOIx+a(x)y
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for all x, y in [a, b). Integrating these inequalities on [a, b]*> we obtain the second
part of (2).

Now, for a given convex mapping f:[a, b] + R, let H:[0, 1] R be
defined by:

H(): v jf(tx+(1—t)a+b

)dx.

The following theorem holds [3]

Theorem 2. In the above assumptions, we have:
(i) H is convex on [0, 1];

@) inf HO=HO-= o)

(iii) sup H(t) H®1)= ———j'f(x)dx
(iv) H ls monotonous nondecreasmg on [0, 1].

Proof. “(i)”. It is obvious.
“(ii), (iii)”. We will prove the following inequalities:

(3) f(f'ié)SH(t)St —If(x)dac+(l—t) f(ﬂ)

—l——j'f(x)dx telo, 1).

By Jensen’s integral mequahty, we have:

H(t)zf(——-j'[t +u-:)"—+"1dx)-f(ﬂ9)

The other inequalities in (3) are obvious from the convexity of f.
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“Giv)”. Let ¢t,, t,€(0, 1) with ¢,>t,. Then, from H being convex on (0, 1),
one has:
(H(‘z)_H(tl»/(tz_tx)ZH' (tl)

1 ® a+b a+b
=b—_—j' 't x+(1— (——)d

[H(zl)—f(ﬂ)lzo

Consequently, H(t,)—H (z,)ao for 12¢,>¢,20 and the statement is proven.
Now, we will define the second mapping in connection to Hadamard’s
inequalities. Let f:[a, b] = R be convex on [a, b]. Put

b
§ [fex+(1—1)y)dxdy.

F:[O, l]—bR. F(t):-‘(—b-j

The following theorem holds [3]:
Theorem 3. Let f:[a, b] > R be as above. Then:
(@) F(s+%)=F(%—s) for all s in [0, %];
(ii) F is convex on [0, 1];
(iii) We have:

sup F(t)=F
tel0, 1]

and
x+y

inf F(t)=F(= ) b= a)sz( )dxdy;

tel0, 1)

(iv) F is monotonous nonincreasing on [0, 1/2] and nondecreasing on [1/2, 1];
(v) One has the inequality:

@) H@®)ZF(@) for all t in [0, 1].

Proof. “@i), (ii)". It is obvious.
“(iii)” Follows by Theorem 1 for a(x)=t, B(¥)=1—t, x, y in [a, b] and t€[0, 1].
“@iv)”. Since F is convex on (0, 1), we have for t,>t,, t,, t,€(1/2, 1):

(F(t))—F @ Wty —t,) 2 F. (t,)

1 bbd
=G=a | I+ tx+ At ))Xx—y) dxdy

1
25— (FCt)—-F(3)20,
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which shows that F is monotonous nondecreasing on [1/2, 1].
The second part follows by “(i)”.
“(v)”. We have:

1t 13 ‘
H(t):=T[f(—_—j'[tx+(l—t)y]dy)dx.

Using Jensen’s integral inequality, we derive easily (4).
In the recent paper [4] the following refinement of Hadamard’s inequalities

for multiple integrals is proved:

Theorem 4. Let f :I = R— R be a convex mapping on the interval I and
a, bel with a<b. Then

b 2" 2
SR s G [ IO dxy o,

—(b a)k-l! If('x_li_ix_hﬂ)dx xS

I .‘f(xl-*-xz)dxl dx,

for all k. a natural number with k23.
Now, we will give another result of this type.

Theorem 5. In the above assumptwns, we have:

a+b 1

(&) f( 2 )_(b a)"j ff(—':-‘- P(xl)dxl .dx,
1 b
éz_—ajf(x)dx

for all p,=20 (i=1,...,n) with P,:= T p;>0 and n is a positive integer.
i=1

Proof. By Jensen’s integral inequality for multiple integrals one has:
1 b b 1 .

f((b—a)"“ .E('};; E p;%;)dx,...dx,)
1
é(b—a)" I If(—. ‘f: plxl)dxl .dx,

for where results the first part of (5).
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“The second inequality in (5) follows from Jensen’s discrete inequality:
1 * 1 2
—> S— X
f(P_ ‘-1Pt-"i)_P‘ ‘-lpi.f(xi)’
by integration on [a, b]"

Now, we will point out some inequalities of Hadamard’s type for
differentiable convex functions.

Theorem 6. Let f :1 = R — R be a differentiable convex functions on I and
a, bel with a<b. Then one has the inequalities:

1 bd
—Tj'jf(tx+(l—-t)y)dxdy

1 b
©) 055, [0 dx——

S(@)+f(b)
SHTg -5, W)
for all ¢t in [0, 1].

Proof. The first inequality follows from Theorem 3.
To prove the second part of (6), we observe that:

Stx+(1=y)—f2t(x—y) /')

for all x, y in [a, b] and ¢ in [0, 1]. Integrating this inequality on [a, b)* a simple
computation shows that the statement is true.
Another result which is interesting by its consequences, is the following:

Theorem 7. Let f be as above. Then:

1 b
S +f’(tx%3—t)§m §f(x)dx

(t) , 1 bf(b)—af(a)--t(f(b)—f(a))
§f7+5' b—a

Jor all t in [a, b].

Proof. The first inequality is obvious.
The second inequality follows by

JO—-f(x)2(—x)f"(x), x, tela, b]

by integration over x on [a, b).

Corollaries. a. In the above assumptions (for 0=<a<b), we have:
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1]
El_; S(x)dx<min {H (a, b), G/(a, b), A,(a, b)}

where
Hy(o b imslf( )+ XOL T,
— b
G, (@ b) :=§U(Jab)+Jb{(/ H://af(ayl
4,6 b) ==%V ( ";—b)w(a) +/(6))/2)
(see also [10]).

b. If f'(\/ab)=0, then:

c If f* ( )_z.o then:

2ab
d. We have the inequality
| 1 2 a-b
'I;—f ( ,f(b)'*'f'(b)T}-

e. We have the inequalities:

@+/0)_ 1 O~ @
0O L (0O @

(b—a)

f. Suppose that p, are nonnegative real numbers with p,>0 and x, are in [a, b)
(i=1,...,n) so that:

a+b *
- Z f(x)p2 2 puSf (x)x;.
i=1 i=1

Then one has the inequality
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1 8 1
b—a ff(x)dxéf,- ‘E:lp:f(x()-

Remark 1. If we choose in the above inequalities f(x) :=x?, xe€[a, b]
(0sa<b, p>1)or f(x) :=1/x, x€[a, b] (0 <a<b) we can obtain some inequalities
improving the results established in [10] (see also the references listed in [10]).

In paper [4] it is also proved the following discrete analogue of Hadamard’s
inequalities: ’ 3

Theorem 8. Let f be a convex mapping on I and a, b belong to I. Then the
Jollowing inequalities are true

1 i i
e L el

J@+f0)
=2

Jor all positive integer n.
Now, we will give another result of this type.

Theorem 9. Let f be as above, a, bel, p,=0 (i=1,...,n) with P,>0 and t is
1 ' ) :
fixed in [0, 1]. If t, are in [0, 1] so that 7 X p,t;=t, then one has the inequalities

ni=1

™ L) S e+ (- b1 —a+ 5]
ST I piglfta+ (-t —t)a+5b)
ni=1
_f@+/®)
-_ 2 *

Proof. The first inequality is obvious from the convexity of f Let us
consider the mapping:

g:[0, 1]1-R, g(o) :=%[f(ta+(1—t)b_)+f((1—t)a+tb)].

It is clear that g is convex on [0, 1] and then Jensen’s discrete inequality for g
yields the second part of (7). ,

The last part is also obvious.

For other inequalities in connection to Hadamard’s result, see [1-12] where
further references are given. '
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