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»
We consider the problem of computation of the definite integral I = [ £(x)q(x) dx, where g(x) is a density

b
function (¢(x)=0 and | g(x)dx=1). The aim of this article is to estimate the probable error by integral
modulus of continuity.

1. Introduction

Let denote by N (4, %) a normal random variable with mean y and variance
1
o2, which is understood to be the constant g if 6=0. ®(x)=—7 2717 j e~?dtis a

distribution function of N (0, 1); x(M') is a characteristic function of the set M;
dx — Lebesque measure; C[a, b] is the set of real-valued continuous functions on
the segment [a, b), equipped with the uniform norm |-|.

Let I be any functional that we estimate by Monte-Carlo method; 6, be the
estimator, where n is the number of trials.

Definition 1. We define the probable error as follows
(1) P{I-0,12r,}=1/2=P{-6,|Sr,}.

If the standard deviation o (6,) <o, the normal convergence in the Central
Limit Theorem holds.

P {Il_enléxc(ol)”—uz} = o(x)'

Obviously, from (1) and ¢(0.6745)-% we have
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?2) r,=0.675445(6,)n" 2.

. . . . 1
In other words we obtain the upper estimate for r, with a confidence coefficient 3

If in the Central Limit Theorem the convergence in distribution is not to the
normal distribution, the estimate (2) has no sense, since ¢ (6,)=co. In the case
when the Monte-Carlo method has a probable error r,=0(n"!/2"*) where £>0,
then we say that the Monte-Carlo method has an overconvergent probable error.

Let the segment [a, b] be separated to closed subintervals A;, j=1,2,...,n
such that: )

3) [a, b]= U A, and for the open intervals AY N A} =@,
J=1 ’
for i#j (@, j=1,...,n);
(4) for the uniform distribution of probability condition there holds
fpaxsSL;
H n
3]
) |A,|§%, where |A)| is the length of A; — the uniformly small
geometrical sizes condition.

C, for j=1, 2 in (4) and (5) are an absolute constants.
First, Dupach (see [6, p. 140]) proved the following

Theorem 1. Let f(x) have continuous derivative f' on [a, b] and satisfy
conditions (3), (4), (5). Then

r,=0(n"372).

Therefore, the Monte-Carlo method constructed above has an overconver-

gent probable error.
Let feL [a, b] for p21.

bt
o(f, h)L’la.bl =sup {{ [ If(x+0)—f(x)?dx}'"?:0=t=<h}.
We shall use the following modulus from [Z'i]:
T(f, Oppani =l * 5 Opiany lpta.nys

where

é
WU, i Oma={z5 [ le+0—0 e}
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and | f(x +t)—f(x)| is defined as.0 if x or x+¢ are not in [a, b], and p'=1. For p’<p
in [3) was proved that

(6) (s Wppany S0, h)Lp[a.b] =2t(f, Wppasy,
o(f, x; d)=sup {|f(x+t)—f(x)l :¢, t+he[x~—g, x+g]n[a, bl}.

We define the average modulus of smoothness as follows
(i 6),(451 Sleo(f, . ,5)",(4,»1.
Evidently,

Y] o(f, h)L,[a.b] =t(f, 5);(«.51 .

Definition 2. Let L(x) be a positive measurable function on the interval
(0, ). L(x) is a slowly varying function if and only if for any C>0 holds

. L(Cx) _
mIe "
If f(x) is a slowly varying function, for any £>0 holds
8) lim f(x)x*=o00, and lim f(x)x~*=0 (see [S, p.24)).
X—* 00 XxX=* a0

L 1. Dimov and O. 1. Tonev [2] improved Dupach’s result in the following
way.
Theorem 2. Let f(x)e C[a, b), and satisfies condition (3), (4), (5). Then

ra=0@(f, 1™ yunn ).

In this article we shall prove the following
Theorem 3. Let f(x)e L, [a, b] and satisfy conditions (3), (4), (5). Then

(9) r.==0(a)(j; ”-I)Lzl‘b]n_llz).
Remark 1. If Var(f,)=co, the normal convergence holds if and only if
b

when u(t)= [f(x)x (If(x)| St)dx is slowly varying function. In this case we have

that r,,=0(n.'”“’), where ¢ is arbitrary positive number (see (8)), therefore the
above Monte-Carlo method has not overconvergent probable error.
Remark 2. From properties of @ (f, h).,.5 (see [4, p. 116]), and from [1] it

follows that the order of the estimate (4) is the best possible. The Dimov and
Tonev result follows from the Theorem3 and (7).
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2. Auxiliary result

We define

j+1
(10) f.(x)=n 5 f(u)du for xeli/n, (i+1)/n}, and

j=0, 1,...,n—1, and f(1—1/n)=£(1).
We shall prove the following
Lemma 1. Let fe Ly, then

n—1

z ||f—f;. "L’u/n.unyu] =t(f h)xp(o.n-

j=0
Proof. Using the Minkovski inequality and (10) we obtain
1

? \f—f£. ||L;1/.,a+ 1¥/n)

j=0

n—1 » 5
<z { fnf If(X)—f(u)I’du}”'dx
ol
s+
n—1 L 1/p
<z 2{ | o(f, x; t)‘,’(Aﬁdx}
j=0 J
j+1
n—1 n 1/p
<z 2{ _J[ CO(_/; X, t)f[‘,,]dx} _é‘t(j; h)lp(a,b]' ]
j=0 J

3. Proof of Theorem 3

Without loss of generality we can suppose that [a, b] = [0, 1] and g(x) = 1.
After that we set A,=[j/n, (j+1)/n], for j=0, 1,...,n—1. It is easy to see that the
conditions (3), (4), (5) follow from the above assumptions. Now we consider the
function f(.) of the random vari?ble &.u, Where &, is a random point uniformly

distributed on A,. Then I= X I,, where I,= | f(x)dx. For 6, we obtain
k=0 ax
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lu—l
0,,=; T f(¢4). For the mathematical expectation of f({.) we get Mf(Ex)

k=0
=f,((k—1)/n) for k=0, 2,...,n—1. Applying Lemmal for p=2 we get

n—1

n—1
Var(0,)=Var(> = fEu)=n"* T Var(¢n)
k=0 k=0

2»—1 - 2 -3
=;k§° (fim )MA}]é;T(f' n” )iy

Now Theorem 3 follows immediately from (6) for p=2 and the Tchebycheff
inequality. =
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