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Generalized solutions in the sense almost everywhere are considered. A theorem on the
uniqueness of mixed problems for differential-functional systems in two independent variables and
diagonal form is proved. The problem of local existence of almost everywhere solutions is solved. The
formulation includes retarded arguments and hereditary Volterra operators.

L. Introduction

Let a,, b>0 be given constants and Q=[0, a,] x[—b, b]. Write D=[—1,,
0] x[—1, 7] where 14, teR,, R, =[0, +o0), and E=[—1,, ap] x[—b—1, b+1],
Ey=[—14, 01 X[—b—1, b+1], ,E=[0, ag] x([—b—1, —b]ulb, b+1]). Suppose
that z : E-R" and (x, y)eQ. We define a function 2, :D—R"by z,,,, (¢, s)=z(x +¢,
y+s) for (¢, s)eD. Thus we see that z, ) is a restriction of z to the rectangle [x—1,,
x]x[y—r1, y+1l.

For any metric spaces X and Y we denote by C(X, Y) the class of continuous
functions defined on X and taking values in Y.

We assume that p=(p,,...,p,) :@xC(D, R"M-R", f=(fy,.-..f):Q
x C(D, R")—R" are given functions of the variables (x, y, w), w=(w,,...,w,). Let
@ :EqUI,E—R", o=(9,,...,9,). We consider quasilinear hyperbolic systems of
differential-functional equations

(1) D.z,(x, Y)+pi(%Ys 2e)Dy 2% N=Li(%, Vs 2y 1=1,...,m
with initial-boundary conditions
2 z(x, y)=@(x, y) for (x, y)eEqUd, E,

where z=(z,,...,z,). In this paper, we seek generalized (in the sense almost
everywhere) solutions of mixed problem (1), (2).

System (1) contains as a particular case the system of differential equations
with a retarded argument and hence the unretarded case which was studied in [1],
[2]. Differential-integral systems can be obtained from (1) by specializing the
operators p and f. Differential-functional problems with operators of the Volterra
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type [15] are also a particular case of (10). Generalized solutions of quasilinear
hyperbolic systems with the Cauchy and boundary conditions have been
investigated in [2], [7], [8]. Continuous generalized solutions (satisfying integral
systems arising from differential equations by integrating along characteristics) of
mixed problems for hyperbolic systems have been discussed in [1], [12], [13]. Local
a. e. solutions to a free boundary problem for a quasilinear hyperbolic
differential-functional system was considered in [5].

Classical solutions of first order partial differential-functional equations
have been considered in a large number of papers by various authors. We refer
here the papers [6],[10], [11], [14]. For further bibliography see the references in the
papers cited above.

In this paper, we consider the local existence and uniqueness of generalized
solutions of mixed problems (1), (2). Our result is a generalization of the existence
and uniqueness theorems from [1], [12], [13], [15]. The method used in the paper is
based on bicharacteristics theory and is close to that used in [2], [3], [8]. Our results
are also motivated by applications of differential-functional equations considered
in [4], [9].

II. Assumptions and lemmas on bicharacteristics

For n=(n,,...,n,)€R" we write | n||=max {|n;| :1Si<n}. Let | w|, denote
the supremum norm of weC(D, R") and C(D, R"; p)={weC(D, R") : ||w|| <p},
PER, . Let L([e, B], R) be the set of all integrable functlons ! :[«, f]—=R. We will
denote by C, (D, R") the class of all functions we C(D, R") satisfying the condition

"W(t, S)—W(l-, §) "élj ‘D(OdC'*'q lS—EI, (ta S), (t-’ 5) €D,

where weL([—1t,, 0], {)1,,), geR, (w and g depend on w). For weC, (D, R") we
define |wl,=inf{g* | @ ({)d{}+ | wll, with the above given gand w. Let C, (D,

R*; p)={weC_(D, R"? Iwl.=p}, peR,. For 0Sx=<a, we define Q[x]=][0,
x]x[—b,b), E,=[— 14, X] x[—b—1,b+1] and we denote by | ||, the supremum
norm in the space C(E,, R"). Denote by 6 the set of all functnons l: [0
ag]xR,—R, such that I(, s)eL([0, a,], R,) for each seR, and 1) is
nondecreasing on R, for almost every (a. e.) te[0, a].

Assumption H,. Suppose that

1° the function p (., y, w) :[0, a,]— R" is measurable for every (y, w)e[—b, b]
x C(D, R") and p(x,.) :[—b, b] x C(D, R")—R" is continuous for a. e. xe[0, a),

2° there exists I €0 such that for all (y, w)e[ b,b] x C(D, R" ; p) a.e. xe[0, a,),
we have | p(x, y, w) IISI (x, p),

3° there exists I, €0 such that for all (y,w), (7, W) €[— b, b]x C;(D,R";p) a.e.
x€[0, a, ], we have
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lo(x, y, W)—p (x, 3 W) IS1,(x, p) [ly—FI+Iw=w I
4° there is £,>0 such that for every peR, we can find c,(p)>0 with the

property : .
pi(x, y, W2co(p), i=1,...,n, ye[—b, —b+g,],

and
pi(x, ¥, WS —co(p), i=1,...,n, ye[b—eg,, b,
for weC(D, R"; p), a. e. x€[0, a,]. '

Assumption H,. Suppose that peC(E,ud, E, R") and there are q,,9,€R,,
woeL ([— 7, a0l R,) such that '

le(x, Y=o & M ISIf wq(s)ds|+q0ly—F| on Equdy E

and
lex, n—eo (% n)llSq,|x—%|, x.X€[0, a;] where n=>b or n=—b.

Suppose that Assumption H, is satisfied and xe€[0, a,), p, geR,,
weL (14, X, R,). Assume that p=max {|¢ (x, y)| :(x, y)eE,ud, E}, 24, and
w(S)Z w4 (s) for a. e. se[—1,, x]. We will denote by C, . [p, w, q] the set of all
functions zeC(E,, R such that

() lzll.=p and z(t, s)=o(t, s) for (¢, s)eE,—{(0, x] x(—b, b)},

(i) llz(¢, )=z, 3 =1 w(n)dn|+qls—5|on E,.

For zeC, ,[p, », 4], 6< a<a,,(x, y)eQ[a], 1 i< n, we consider the following
problem

3 n@=p @t @), Zenep)  Nx)=y.

If Assumptions H,, H, are satisfied then for every zeC, . [p, ®, g}, there exists a
unique solution g, [z](. ; x, y) of (3). We denote by a;(x, y; z) the smallest value of
the argument ¢ for which the solution g, [z] (¢; x, y) of (3) is defined. Then («,(x, y;2),
g:[z)(@;(x, y; 2); x, y)eFr Q[a]. We introduce the following notations:

Ey;[z]={(x, y)eQla] :o;(x, y; 2)=0},
Eyi[z]={(x, y)eQla] :g;[z)(a;(x, y; 2); x, y)=—b},
Eylz]={(x, y)eQla] :g, [z} (x;(x, y; 2); x, y)=Db}.

Lemma 1. Suppose that Assumptions H, and H, are satisﬁed. and z,Z€C, ,[p,
w, g, (x, ¥ (X, y)eQla), ae(0, a,). Let x=min(x, X) and assume that
I,=[max {(x, y; 2), %(X, ¥; 2)}, ¥]#0, 1sisn.

Then we have
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@ _ a2t x, y)—g,l2]¢; %, D)

<lly=71+I] lo(s pMs[lexp [1+q) [ I,(s, r)ds), teT,

where r,=p+q+ | w(s)ds, and
=%

&) » 1g:[z1(t; x, y)—g;[2] (¢; x, y)I
<f 1,65, 7 lz—2 I ds exp [1+a) [ Iy (s, r)ds],

te[max {a,(x, y; 2), ,(x, y,; 2)}, x].
Proof. We will consider the case where x <x. Our proof starts with the
observation that

19:[21(t; x, y)—g;[2](t; %, P ISIy—F1+ [ 1o(s, p)ds

+|f 1, (s r) (A +a) g, [21(s; x, Y)—g,[2)(s; %, ¥) |ds], teT,.

Hence, and by Gronwall’s inequality we get (4). The case x>x we consider
analogously. ‘
It follows from Assumption H, that

lg:[21(t; x, Y)—g;[2] (&5 x, WISI LG, r) [g:[2)(s;5 x, »)—g;[2] (s; x, )|

+ " z(u,[z)(:;x.y)) _z-(s.a.-[fl(s;x.y)) II*]dsl, te[max {ai (X, Y z)’ a, (xv Y i)}’ x]-
Since ,
| Zs gyt xom — 2558 i[2] (55 X, ) e SN2 = Z s+ qlgi (2] (55 %, 1) = g:[2] (55 %, Y)s

we have

lg;[2(t; x, y)—g;[2] (¢5 % DISIS U, r) 1z—Z ||, ds|

+If LG r) (A +9)1g,[2)(s;5 x, y)—g,[2] (s; x, y)|ds].

By applying the Gronwall’s inequality we get (5). This ends the prbof. |

Lemma 2. Suppose that Assumptions H, and H, are satisfied and Z eC, ,[p,
w, q], ae(0, a,). Then there exists £>0 such that for zeC, ,[p, w, q] satisfying
lz+Z ||,<& we have L '
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x
6) loy(x y;2)—a,06 y; D1Sco®@ ™ K, | (s ) lz—2 |l ds,
o

K,=exp[(1+9) } l, (s, r,)ds).
V]

Proof. It is easily seen that the function a=(x,,...,a,): Qla]xC,.[p, »,
q]—R"is continuous. Sinte Q[a] X C,,[p, @, q]is a compact set it follows that there
exists ¢ >0 such that the following implication holds true:

(1) ifllz—Z|,<¢ then |a(x, y;2)—a(x, y; 2) | S, for (x, y)€Q, where & is
the constant given in Assumption H,. It follows that there exists ¢”>0 such that
for zeC, ,[p, ®, q] we have

@® if |z—Z ||, <¢" then Ey;[z)nEy([Z]=Q and
Ey[Z)InE;[21=Q for i=1,...,n.

Define £=min (¢, £”). Suppose that zeC, ,[p, w,q] and [|z—Z || <& We need only
consider two cases.

‘1) Suppose that (x, y)€Ey[ZlnEy;[Z], 1SiSn o, (x, y;2)Sa(x, y;2) then
we have g,[] (s; x, y)e[—b, —b+zg] for se[e;(x, y; 2), a;(x, y; 2)] and

&) 19,[21(q, (x, ¥; 2); x, Y)—g;[2] (@, (x, y; 2); x, Y)|
=|g,[2] (@;(x, y; 2); %, ¥)—4g,[2] (2;(x, y; 2); x, y)|
aj(x.y:z) . S
=l [ pils g:l2 (55 % V) Zigymends 1260 () [4(x, y5 2)—a;(x, y: 2))
ayx.y:2)

According to Lemma 1, we have
x
(10) 1g,[21(2,(x, ¥32); %, V) —g,[2] (2%, y;2); X, WSS LiGs,7) z—Z |, ds K,.
o

Estimation (9), (10) imply (6). The case o,(x, y, 2)>a (x, y; z) we consider
analogously. :

2) Suppose that (x, y)eEq;[Z]NE y[z], 1 Si<n. Then we have g;[z] («;(x, y; 2);
x, y)=—b, g[2] (a;(x, y; 2); x, y)= —b and

(n 9,21 (0%, y; 2); %, Y)—gil2] (@,(x, ¥; 2); X, )

29,[2] (2,(x, ¥; 2); X, Y)—gil2] (@,(x, ¥, 2); X, %)
afx.y;:z)
= [ pis gilZ] (55 % 1) Zgmean) A5 Z o) [i(x, ¥5 2)— (%, y; D))
aix.y:2) v
In virtue of Lemma 1 we get



318 : Z. Kamont, K. Topolski
(12) 0=g,[2] (2,(x, y; 2); x, Y)—gilz)(2,(x, y; 2); x, y)
SK, [ li(s, r)llz—2 | ds.
o

Combining (11) and (12) we have (6).
In a similar way we can prove (6) if (x, y)eE,;[z]NE 5 [2] or (x,y)eEy[z]
NE,;[z], 1<i<n. Hence, the assertion is proved. B

III. Uniqueness of solutions of nﬁxed problems

We will need the following assumptions.

Assumption H,. Suppose that

1° the function f(-, y, w) :[0, a,]—=R" is measurable for every (y, w)e[— b, b}
x C(D, ") and f(x, *) :[—b, b] x C(D, R)—R" is continuous for a. e. x€[0, a,],

2° there exists mye0 such that for all (y, w)e[— b, b] x C(D, R"; p), a. e. x€[0, a,),
we have | f(x, y, w) | Sm,(x, p), .

3° there exists m,e0 such that for all (y, w), (y, w) e[—b, b] x C.(D, R"; p), a.e.
x€[0, a,] we have

If G v, W=f(x, 7 W) I Sm,(x, p)[ly—F|+Iw—w ],
4° the functions

‘Yo(x9 P}‘j IO(S, p)ds: 71(x: p)=I mo(s! p)ds’ XE[O, ao]! pER-O-’
o [ .

satisfy the Lipschitz condition with respect to x on [0, ag] xR,

1Yo, P)=7o(X, P)I=M,(p) |x—x],
I71(x, P)=7,(%, P)ISM,(p) |x—x|.
Theorem 1. Suppbse that Assumptions H,— H, are satisfied. Then mixed
problem (1), (2) admits at most one solution Z of class Co.ap [P: @, q].
Proof. It follows that the solution Z €Cq.q [P, @, q] of (1), (2) satisfies

Z,0x V)=0iaix, y; 2), g,l2] (@(x, y;2); x,y)

+ § Sis gilZ] (55 % V) Zigumenp s, i=1,...,m, (x, Y)€Q.
afx.y:?)
Suppose the assertion of Theorem is false. Then there exist zeC,, [p, o, q]
satisfying (1), (2) and there is 0=Sa<a, such that
() z(x, y)=2(x, y) for (x, y)eQ[a],
(ii) for each natural number k there is (x,, ) €Q [a,] such that
(13) 20X Y#Z (X W) %>6 k=1, 2,..., lim x,=a.

k=00
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It follows that we can choose a€(0, a,) such that |z—2Z ||, <& é=min (¢, &) and &,
¢” are given by (7) and (8) respectively. Let Sz=((Sz),,...,(52),),
Tz=((Tz),,...,(T2),) where ’

(82),(x, )=@,(a;(x, y; 2), g,[2)(x, ¥; 2); x, ),

(Tz)i (x’ y)= j ji(s, g; [Z] (S; X, Y); z(:c;[;XuxJ)))ds) i=l, —_—

ax, y: 2)
Then we have for (x, y)eQ [a]
1(52);(x, )~ (82) ;(x, Y)I=4q,loy(x, y; 2)—ay(x, y; 2) |

+4,olg: (2 (@;(x, ¥; 2); X, Y)—g:[2] (2,(x, y; 2);5 x, y)I
+4,19,[2] (@,(x, y; 2); %, Y)—g,l2] (a;(x, y; 2); x, )

<K, g,coP) " +q0) § Lis, ) lz—Z |l ds
A ;
%ox.y:2) _
+q° I I Pi (S, gi [2] (S; X, y), z (5.0 42Ks:x.y) )ds |
afxy:d)
SK,lco®@) ™t (@3 +qo Mo +44] § 1i(s, 1) l1z—Z |l ds, xel0, a].
(]

We conclude from Assumption H, and from Lemmas 1 and 2 that

(Tz2);(x, )—(T2) ,(x, MIS| §  Uils, g:[21(55 X, ¥), Ze gyt 6:x)
a(x.y:z)

—fl (S, gi [2] (s; X, Y), 2 (s. gil2)s:x.y) )]dS l

{(x.y:2) -
+|!' I.y f((s’ g; [2] (S; X, Y), z(s.a,-[fl(.l:x.y)))dsl

a(x.y:2)
x

<] mu rllade)(s: % )= 63 %)
126 g e — Ecomnoy o Jds+ My @) L, y; D= ,(x, ¥: B |
<] m (6 K0+ 5 L@ r) lz—2 lde+ | z— |1 ds
+M,; (p) |y (x, y; 2)—o;(x, y; 2) |

=

Ot &

LG5, r) lz=Z ,ds[(1+q) | my(s, rods+M, (@) co@) ! K,]
fmiGs

+f my(s, r)llz—Z|,ds.
(1]
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Thus we see that there exists U(., p, q, ®)eL([0, a)], R,) such that
1264 =2 (5 IS] UG .0, @) 2= 1,ds, (% YeQla]
and consequently |
lz—2Il, I UG, g, 0) 12— Z ||, ds, xe{O a.

Hence, and by Gronwall’s inequality we get z(x, y)=2Z (x, y) for (x, y)eQ [a], which
contradicts (13). This proves the Theorems. B

IV. Existence of solutions

We start with the following lemma. : .

Lemma 3. Suppose that Assumptions H, and H, are satisfied and
2€C, .[p, , q]. Then there exists a constant L,eR, such that we have for (x, y),
(x. V) €0lal

(14) loy(x, y; =%, 55 DISLly=Fl, i=1,...,n.

Proof. Let (x, y), (x, y) €Ey;[2], 1 Si<n. Without loss of generality we can
assume that «,(x, j; z)=a;(x, y; z). According to Lemma 1 we have

(15) gl (x, 75 2); % M) —g:[2l (@ (%, 75 2); x, §) IS K, ly— I
where K, is given in Lemma 2. It follows that

(16) 19:[2) (@(x, 75 2); X, y)—gil2) (@i(x, y; 2); %, Y|
a {x.5:2)
I pi(s, g;[2](s; x, y), Z(,,‘,x,,,d),)dsl
‘afx.y:2)

It follows that there exists >0 such that
lg[21(t; x, y)—g,[21(7; x, y)|Se, for |t—t]<3, ¢, t €[0, a],
(x, y)eQla], zeC, q[p, @, 4.
Let é>0 be a such constant that |a,(x, y; 2)—a,(x,.5; 2)|<d for

|ly—y|=¢e and for x€[0, a}, zeC, .[p, o, q]. Ifly—i|<s then

q(x.y'x)
I P (S, g (S X, Y, )’ z(u,[zx.l iX.y)) )ds I
q(x.y:x)

ZCO(p) Ial(x’ ys Z) ai(xo y9 2)', XE[O a]’ zeC,.[p, (0 q]'
We conclude from (15), (16) that
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la,(x, ¥5 2)—a,(x, y; z)ISco(p)_ K, ly—yl
for |y— y|Se, x€[0, a], zeC, ,[p, , q]. Thus we see that (14) holds true wnth
a7 L,=max[cy(p)" ' K,, ae™'].

The case (x, y), (x, ) €E,;[z] we consider analogously. We have a,(x, y; z)=0 on
Ey;[z], 1 Si<n, and the proof is complete. B

Theorem 2. If Assumptions H,— H, are satisfied then there exists a€(0, a,),
p, geR and weL([—1,, a], R,) such that mixed problem (1), (2) has a solution Z
which is of class C, ,[p, v, q].

Proof We first observe that

(18) [(S2),(x. MI+(T2);(x. WISpo + fmo (s, P) ds, (x, y)eQ[al. i=1,....n.
o
Let (x, ), (x, ) €Eo; [z]. Then according to Assumptions H; —H; and Lemma 1 we

have for i=1,...,n

1(52);(x, ¥)—(S2);(x, ) |Sq0 K, |y— 7|
' and

I(T2),(x, »)— (T2);(x, P 1S+ K, | my(s, r)ds|y—7F
V]

where K, is given in Lemma 2.

Let us take (x, ), (x, ) €E,;[z] and assume that a,(x, y; z2)<a;(x, ¥; 2) (the
proof for a;(x, y; z)>«; (62 y: z) is similar). Then we have 1(S2); (x, ) —(S2);(x, y)|
<L,q,ly—yl with L, given by (11) and

2% )~ (T2,06 1S T S @il 59, z(uazxs.u»)«}sl
ayx.y:z)
I Ui (s’ g[ [Z] (S X, y)! z(.rgi [2Xs:: xy))) fi (S gi [Z] (S X, y-) z(s.q,[zls :%.5) )] dSI

u‘x .y:z)
SIMy@) L,+(1+9) K, | m,y (s, r,)ds] ly—Jl.
()
In a similar way we prove the above estimation for (x, y), (x, y)€E[z]
Summarizing, we get

(19) 1(S2) (x, VV—(S2) (X, VI + 1(T2)(x, V—(T2) (X, M
=R, |y—7l, (x, y), (x, y) €Q][a],
where

R,=max {[go+(1+4q) j m, (s, r)ds] K,,[q, + My(P)] L, +(1+q) K,}ml(s, r)ds}.
0 o
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Let (x, y), (X, y)€E,;[z] and assume that x <X (the case for x> x is similar). befine
y=¢,[21(x; X, y), then (x, y) €Ey;[z] and for Wz=Sz+ Tz, Wz=((Wz) ,,...,(W2),),
we have

|(W2),(x, y) = (W2) (X, y)|=|(W2),(x, y)—(W2),(X, y)|
+1(W2),(x, 7)—(W2) ;(X, M)I=R,ly— 7|

+lz S5 GUIEN(S; % V) Zuagrozn WS ISR, Iy =F1+] mo (s, p)s.
Furthermore
y=5l=16,21; 2 =0l % NIS] lols pMs
and consequently
(072,65 )= (W25, DIS] Ralo(s, -+mols Pl
Let (x, y), (X, y)€Ey[z] and assume that x<xX (the case x>x we consider

analogously). There exists y e[ — b, b] such that (X, y) €E,;[z] and y=g,[z] (x; X, J).
Since v

x
ly=71=lg,[21(x; % )= g.[21(%; % =] lo(s. pds,
and the points (x, y), (X, ) belong to the same characteristic g;[2z](.; x, y), we have
by (19)
(20) [(Wz);(x, y)— (W2),(%, )ISI(W2);(x, y)—(Wz),(%, 7)I

HWD,& H—W2) (& WSS Ime(s P+R.1o(s ps.

In a similar way we get (20) for (x, y), (X, y)€Ey[z].
- Summarizing, we get

@) (5 (6 9—(52) (& NI+ 1T N (TG N
<If w,(s)ds, (x ) (B 1eQ.,

where w,(s)=m (s, p)-i-R,lo (s, p). Write
P=2po, g=max[2go+1), (@, +Mo(@) co0) ™! +1}, -
~als)=mq(s, P)+qlo(s, P)-
There exists ae(0, ap] such that
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¢ 1
f mo(s, pMds=p,, K, <2, L, <2 ¢,(p)7 ",
0

(1+q) } m,(s, r)ds<1, 2(1+q) } m,(s, r)ds<1.
o o

Summing up, we have R,<q, w,(s)S w (s) for s€[0, a] and ||(S2) (x, y) || + [I(T2) (x,
y) I =p for (x, y)eQ[al, and consequently Sz+ TzeC,,[p, », q].

It follows that the operator S+ T is continuous on C,,[p, @, q]. Schauder’s
fixed point theorem therefore assures that S+ T has a fixed point in C,,[p, o, g].
For this fixed point ZeC, ,[p, w, q] we have .

Z,0x, N=0;((x, y; 2), g,[2] (@;(x, y;2); x, )
+ } 116, g;[2] (s x. y) Gagaasx)ds, i=1,...,n, (x, y)eQ][a],
afx.y:3)

whence (1) follows a. e. in Q[a] by the same consideration as in [7], (in particular,
using the group property of g;[z] and the chain rule differentiation Lemma (4.ii) of
[1]). It is seen at once that Z satisfies (2). This proves the Theorem. W

V. Special cases of system (1)

We list below a few examples of problems which can be derived from (1) by
specializing the operators p and f.

1) Suppose that g=(5 ,,...,p,) :@*xR"XR"-R" and f=(f7,....f}):0Q
x R"x R"—R" are given functions. Let

p(x, y, w)=p (x, y, w(0, 0), fw(t, s)dt ds),
D
f(x, y, w)=f{x, y, w(0, 0), fw(t, s)dt ds), (x, y, wyeQ x C(D, R".
D

Then system (1) reduces to the differential-integral system

sz((x’ y)+ﬁl(x’ .V, z(x, )’)' I z(x+t, )’+S)dt dS) Dyz'i(x’ .V)
D

=fix, y,z(x, y), § z(x+¢t, y+s)dtds), i=1,...,n.
D
2) Suppose that a=(a,, «,):QxC(D, R")—>R?* B=(B,, B, :QxC(D,
R")—R? and j, f are given in 1). Assume that

(ao(x' ya W)"X, al (X, y’ W)—y)ED, (ﬂo(x’ ys w)—x, ﬁl. (x’ y’ W)_y)ED fOl' (x’ .V. W)
€QeC(D, R"). We define for (x, y, w)eQ x C(D, R")

p(x: W W)=ﬁ (x’ » w(O, 0), w(xq (x, Y )— s s Vs -
f&x, y, w=f{, y, w(0, 0), W(ﬁo%x. s w‘;— xf ﬁ:l(g .v{, w‘;’)— y))’)»'
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Then system (1) reduces to the differential system with a deviated argument
D,z(x, Y)+5(x, 3, 2(x, y) 2o (% ¥, 2y D%, 35 2 ) D, 2%, Y)

=f1(.x’ »z(x, V) z(ﬂo(x, Y, z(x.y))r ﬂ1 (x, z(x..v)))’ i=1,...,n

The function «, B depend on the functional argument, therefore we can not apply
existence theorems from [15] to the above system.

3) Differential-functional systems with operators of the Volterra type
considered in [15] can be obtained from (1) by specializing p, f

Remark. All the above results can be extended to the general hyperbolic

case with y=(y;,..., V)
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