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1. Introduction

Line groups are the spatial symmetry groups of three-dimensional objects
periodic along a line. They belong to crystallographic groups, and they were first
derived by two celebrated crystallographers. C. Hermann and E. Alexander,
over sixty years ago [1]. However, they did not arose much interest until late
seventies when quasi-one-dimensional metals and conducting polymers became the
subject of intense research by physicists and chemists worldwide. For these physical
systems, line groups play the role analogous to that of the point groups, for
molecules, and space groups, for crystals. Hence, they were rederived [2] rigorously
utilising theory of group extensions [3], as was done earlier for the space groups [4].
The normal-subgroup-chain structure was elucidated, and it was utilized to derive
[5] all the irreducible representations (ireps) of all the line groups, by the Mackey
induction method [6]. Certain selection rules have also been derived [7] by
decomposing the Kronecker products of these ireps. Finally, line groups and their
ireps found many applications in the Quantum Theory of Polymers, including
construction of symmetry adapted bases, symmetrized dynamics equations that
provide great numerical savings, labelling the electron and phonon energy bands
and identifying their topological character, analysis of vibronic instabilities and
identification of the Jahn-Teller active normal modes, phase transitions, etc. [8].

The problem we address here is reduction of the symmetrized Kronecker
products of the ireps of line groups. Analogous results have been published already
for all the point groups and for some of the space groups and they found applications
in the Quantum Chemistry and Solid State Physics [9]. We have used three
independent methods to derive and check the entries (the standard character
formulae, construction of symmetry-adapted bases, and the direct summation). For
brevity, we will omit the details, and refer the reader to standard monographs [6,9].
Instead, we will give a brief summary of the line group notation, and then present the
results for all the line groups isogonal to the point groups C, and C,, in form of
tables, to facilitate applications by users whose interest is restricted to testing the
selection rules for a particular scattering process.
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2. Notations

1D, 2D, 4D : one, two, four-dimensional

: line group

: reflection in a vertical mirror plane

: 1D irep, even with respect to o, (if o, belongs to L)
: 1D irep, odd with respect to o,

:2Direp

: 4D irep

: quasi-momentum

hm : quasi-angular momentum.

For simplicity we choose the units so that h=1 and the translation period a=1;
then

FAm®AS N

1, 2,...,(n—2)/2 for n even
1, 2,...,(n—1)/2 for n odd.

SKS ' symmetrized Kronecker square
D3 : SKS of the irep D.

—n<k<n and m={

3. Tables of the symmetrized Kronecker squares of all the irreducible
representations of the line groups isogonal to C, and C,

Table 1. SKS of the ireps of the line groups Ln(n=1, 2,...)

D’ k m D3 K m
kAm (-7, -n/2] (-n/2, -n/4]** k' Am’ 2k+2n 2m+n
(-n/4, n/4) 2m
( n/4, n/2)* 2m-n
(-n/2, =/2] (-n/2, -nj4]** 2k 2m+n
(-n/4, n/4) 2m
( n/4, n/2]* _ 2m-n
(n/2, ] (-n/2, -nj4** ' 2%-2n 2m+n
(-n/4, n/4) 2m
( n/4, nf2]* 2m-n

*for n>1 only; **for n>2 only.
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Table 2. SKS of ireps of the line groups Ln,(p=1, 2,...,n-1)
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D P k m DY k' m
kAm (1, n/2) (-=, -n/2) (-n/2, (2p-n)/4) k’'Am’ 2k+2zn 2m-p+n
(2p-n)/4, (2p+n)/4] 2m-p
(@@p+n)/4, n/f2) 2m-p-n
(-n/2, n/2)  (-n/2, -n/4] 2k 2m+n
(-n/4, n/4) 2m
(n/4, n/2] 2m-n
( =/2, =] (-n/2, (-2p-n)/4] 2k-2n 2m+p+n
(-2p-n)/4, (n-2p)/4] 2m+p
((n-2p)/4, *n/2] 2m+p-n
(n/2, n-1] (-=, -n/2] (-n/2, (2p-3n)/4) 2k+2r 2m-p+2n
((2p-3n)/4, (2p-n)/4) 2m-p+n
(2p-n)/48, n/2] 2m-p
(-n/2, =/2]  (-n/2, -n/4] 2k 2m+n
(-n/4, n/4] 2m
(n/4, n/2) 2m-n
(n/2, m) (-n/2, (n-2p)/4] 2k-2% 2m+p
((n-2p)/4, (3n-2p)/4] 2m+p-n
((3n-2p)/4, n/2) 2m+p-2n
n/2 (= -n/2) (-n/2,0] 2k+2x  2m-p+n
©. n/2) 2m-p
(/2 =/2] (n/2 -n/4) 2k 2m+n
(-n/4, n/4) 2m
(n/d, nf2) 2m=n
(=/2, n) (-n/2, 0] 2k=2n 2m+p
©. n/2] 2m+p-n
Table 3. SKS of the ireps of the line groups Lnm (n=1, 2,...)
D k . - [ Dzl k » m.
kAo; kBo  (-», -x/2] O k’ Ao 2k+2x ()}
(-x/2, =/2) 0 2k 0
(n/2, n) 0 2k-2n 0
kEm (m -m/2] [ (n-1)/4] k’Ao+k’Em’  2k+2n 2m
[(n+1)/4, (n-1)/2) n2m
/2, /2] (1, (n-1)/4] 2k 2m
[(n+1)/4, (n-1)/2] n-2m
(r/2, =) [1, (n-1)/4) 2k-2x 2m
[(n+1)/4, (n-1)/4)

7
¥
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Table 4. SKS of the ireps of the line groups Lnmm (n=2, 4,..))

D k m (D? k' m'
kAo; kBo (-x, -nf2] k’Ao 2k+2r
kAg; kBq  (-x/2, n/2] 2k
(=/2, n) 2k-2n
kEm (-m,~n/2) [1, (n-2)/4] k’Ao+k’Em’ 2k+2n 2m
[(n+2)/4, (n-2)/2] n-2m
(m/2, 7/2] (1, (n-2)/4) 2k 2m
[(n+2)/4, (n-2)/2) n-2m
@2m (L2 %2 2m
((n+2)/4, (n-2)/2) n-2m
(-n, -n/2) n/4 k’Ao+k’Ag+k’'Bg 2k+2=n
(-x/2, =2 2k
(ﬂ/2, l] 2k-23
Table 5. SKS of the ireps of the line groups Lnc(n=1, 3,...)
D k m (%] k' m
kAo; kBo  (-x, -%/2) 0 k’Bo 2k+2n 0
(n2, %2 O k’do 2k 0
«2.x O " k'Bo %2 0
kEm (x %2 (L (-1)/4) k’Bo+kEm’ %+2x  2m
[(n+1)/4, (n-1)/2) n-2m
(-=, -=/2] [1, (n-1)/4] . k’Ao+k’Em’ 2k 2m
[(n+1)/4, (n-1)/2] n-2m
(x/2, 7] (1, (n-1)/4) " k’Bo+k’Ew’ 2k-2x 2m
[(n+1)/4, (n-1)/2) n-2m
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Table 6. SKS of the ireps of the line groups Lncc(n=2, 4,...)
D k . m (D% k’ m
kAo; kBo; (-m, -n/2] kAo 2k+2=%
kAg; kBg  (-x/2, /2] k’Ao 2k
(n/2, =] k’Bo 2k-2n
kEm (-x, -n/2) [1, (n-1)/4) k’Bo+k’Em’ 2k+2=n 2m
[(n+1)/4, (n-1)/2] n-2m
(-=/2, =f2] (1. (n-1)/4] k’Ao+k’Em’ 2k 2m
((n+1)/4, (n-1)/2] n-2m
(=/2, =) 1, (n-1)/4) k’Bo+k’Em’ 2k-2x 2m
((n+1)/4, (n-1)/2] : n-2m
(-, -n/2] n/4 k’Bo+k’Aq+k’Bg 2k+2xn
(-»/2, =/2] n/4 k’Ao+k’Aq+k’Bqg 2k
(/2, =) n/4 k’Bo+k’Aq+k’Bg 2k-2n
Table 7. SKS of the ireps of the line groups L(2g) mc(g=1, 2,0
D k m [D?) k' m’
kAo; kBo; (-x, -n/2} k’'Aq 2k+2n
kAq; kBg  (-w/2, n/2) k’Ao 2k
(n/2, =) k'Aq 2k-2x
kEm (-x, -7/2) [1, (g-1)/2] k’Aq+k’Em’ 2k+2x q-2m
[g+1)/2. ¢-1] 2m-q
(-n/2, =f2] [1.(g-1)/2) k’Ao+k’Em’ 2k 2m
[a+1)/2. g-1] 2g-2m
(n/2, x) (1, [g-1)/2) k’Ag+k’Em’ 2k-2n q-2m
[@+1)/2, q-1] 2m-q
(-x, -n/2] q2 k’Ao+k’Bo+k’Aqg 2k+2=x
(-=/2, =f2] q/2 k'Ao+k 'Ag+k '& 2k
(n/2, x) ar2 k’Ao+k 'Bo+k’Aq 21:;21
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4. Discussions

Of principal interest here is to look for the selection rules in the form of
conservation laws for the quantum numbers k (the quasi-momentum), m (the
quasiangular momentum), and 4/B (the mirror-reflection parity). By inspecting
the Tables 1 — 7 one can verify that all three quantum numbers are conserved, for
all the symmorphic line groups (Ln, n=1, 2,...; Lnm, n=1, 3,..., and Lnmm,
n=2,4,...). They are conserved also in the remaining, nonsymmorphic line groups
(Ln,n=23,...,p=2,...,n-1; Lnc,n=1,3,...,Lncc, n=2,4,...,andL(2q).mc,
q= f, 2,...), provided that -n/2 <k <n/2. The latter condition implies restriction
to the so-called ‘nornual’ scattering processes. In the opposite case, one has an
‘Umklapp’ process, for which we find that A— B, B—~A4 and m—2m+p (the sign
depending on whether the reciprocal-lattice vector is added or subtracted).
Indeed, this non-conservation arises from the fact that the point group C, is
isogonal to the line group L,’, but it is not (isomorphous to) a subgroup of Ln,,.

The same is true for C,, and Ln, Lncc and L(2q),mc; for more details, see Ref. 7.
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