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with Delay
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1In this paper periodic states in systems for control with delay are considered. In the problem for
forsed periodic oscillations sufficient conditions are obtained for existence of regular asymptotic
bifurcation points.

1. Introduction

In [1] scalar feedback loops with a single nonlinearity are investigated which
correspond to the following block diagram

u x

P

where Wis a linear stationary (time-invariance) element, F is a nonlinear element
and u is a control signal.

This paper deals with the problem for asymptotic bifurcation of the forced
periodic oscillations in the system for control represented by the above block
diagram. Forced T-periodic oscillation is said to be a T-periodic state x
conditioned by the T-periodic control signal u and by the T-periodicity of F.

The main aim of the present work is to apply some classical theorems of
nonlinear analysis to our problem and to generalize the results obtained for
systems without delay in [2—3]. The proofs we propose are based on the theory of
completely continuous vector fieds which is related to the theory of topological
degree (see [4-5])..
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2. Statement of the problem

Denote integrals on the whole real axis by integral sing without boundaries.
Further, we assume that:
A. W is alinear stationary element whose input-output relation (u — x) satisfies

the equation

i=n—1 -
1) x@O+ T [xO(t—s)dy(s 1)=‘ T lj'u"’(t—s) dB,(s; 2),
i=0 i=0

where y,(-; 4), B;(*; ), 0<i<n—1, are real-valued measures in R! with supp y,(-;
A) = [01], supp B,(-; ) = [0r], 0Sisn—1,r20,n21;

B. Fis a nonlinear element with characteristic function f(t, y,. y,.....y,; 4) which
' is T-periodic with respect to the time variable and with stationary delays in the
phase variables, i. e. the input-output relation (x — w) satisfies the equation

w(@®)=f(t. fx(—s)da,(s; A)...., fx(t—s) de(s; 2); A),

where a,( ; 1), 1 Si<|, are real-valued measures in R* with supp «,(-; 4) < [0, 7],
15ist;
C. At each fixed ve C(T) the formulas

fo—s)dy,(s: 2, fo(t—s)dB,(s; 4., 0sisn-—1,
_ fo@t—s) dey(s; A), 1=5isd,

define continuous, with respect to 4, mappings from A into C( T) where A=[4’,
A"] < R! and C(T) is the Banch space of the continuous real-valued T-periodic
functions provided with the usual norm

Il x||=max |x(¢)].

0StsST
Introducing the notations
l=p—1
L )=p"+ I p'fexp(—ps)dys: A),
i=0
imn—1 -
- M(p: )= I p'fexp(—ps)dBi(s; A),
i=0

we obtain that W(p; A)=M(p; 4)/L(p; A) is the transfer function of W. As in [1]
we have that the equation

@ x(O)=W(p; HF( x; 4),
describes the dynamic of the system for control where
F(t, x; )=u@®+f (@ ¥ () x, ¥,(A) x,,..., ¥,(}) x; ),
with
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¥, (2) x,={x(t—s) da,(s; A), 15i<l.
Further, we assume that the following conditions hold
L(IT; 2)#0, keZ, AeA,

where I,’,'—an\/ —l/ T. ’
This assumption implies that the T-periodic problem for equation (1) is
solvable with a solution of the form

x(t)-[G(t s, T: Du(s) ds G (T: Au, ueC(T),

where G(t, T; A) is a T-periodic function of bounded variation in [0, T] with a
Fourier expansion
G, T; )=T"* T W(If; Hexp(I]¢).
keZ

It is clear that the set of the numbers |k W(IJ; A)| keZ, is bounded which
gives that G ( T; 1) is a compact operator in C(T). :

The problem for forced T-periodic oscillations in the system for control is
equivalent to the problem for T-periodic solutions of equation (2) which in the
case considered can be written as

(€) x=6(T; HF(t x; 3-) €B(x. T; 2).

Obviously, if ueC(T) and feC(R'*'xA, R') then P(-; T; 4) is a

completely continuous operator in C( T).
In the next sections we consider the problem for bifurcation of the solutions

of equation (3) with respect to A.

3. Forced T-periodic o_scillations

In what follows, we assume that feC(R'*'xA, R') and that f is an
asymptotic linear function in R}, i. e.
i=1l i=l

@ lim sup(E nyl)" If ¢ vy Y2oeeer Yo A— Z a;(3) y,|=0,

Ziyl-o ¢ \i=1 i=1
where g,(1), 1<i<|, are continuous functions in A.
From (4) it follows that P (-, T; A) is an asymptotic linear- operator, i. e.
lim (x|~ B, T; )—P' (0, T; Y x| =0, xeC(T), ,
Ixl—=o

where the asymptotic derivative has the form



378 Dimitar P. Tcvetkov

i=1 .
P (0, T; DxO=6 (T: 2) [ T a,() ¥,A) x,)
i=1
The compactness of & ( T; ) implies the compactness of '( 00, T 1) in C(T).
. The Fourier expansion

a.e. ‘
o) = Z 0,6, T), g(t. D=exp(F9)/ /T,
keZ
holds for every ve L, (0, T) and allows us to find another representation for the
asymptotic derivative

B(c0, T; o= Z u, (T; ) 1,9, (¢, T), veC(T),

keZ
where

i=1
w(T: =W (LT A)( Z a,() fexp(—IT 5) doy (s; A)).
i=1

This representation is the natural extension of P'(co, T; 1) on the space
L,(0, T).1t is clear that P’(co, T; 1) is a normal operator, besides, the relation

lim |p(T; 4| =0,
k|- oo
implies the compactness of the same operator in L, (0, T). The conditions of the
theorem we shall prove in this section exclude the case when P’(co0, T; 1)=0. In
this way we obtain that the operator P'(co, T; 1) has entirely point spectrum in
L,(0, T) with eigenvalues {y,( T 1), keZ} and corresponding eigenfunctions
{g:(t. T), keZ}. Denote SP={py,(T; A), keZ}.

The set of the eigenvalues of P’ (o0, T; 4) in C( T) consists of the real numbers
which belong to SP. It is not difficult to see that for every real ueSP the
corresponding . rootspace: H(u) <« C(T) coincides with the real
finite-dimensional spase generated by the eigenfunctions g, (t, T) for which w(T;
A=u.

Therefore H(u) has the property

. 1 (mod 2), u=pu(T; 4)
5 = .
) dim H () { 0 (mod 2), u# po(T: 2) .

It is clear that the eigenvalues depend continuously on A.

Definition 1. [4] The number A,€A is said to be a regular asymptotic
bifurcation point for the solutions of equation (3) if for an arbitrary ¢> 0 there is a
constant R(g) sich that for every R = R(e) there exists A(R, g)eA for which
[2.—A(R, &)| <e and the equation x=%P(x, T; A(R, &) has a solution x[1(R,
e)]e C(T) with || x[A(R, €)]]l=R.

We define
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i

OW=po(T: H—1=W(; A) ( T a,() fda,(s: ,1))—1.

i=1

Theorem 1. Let ueC(T) and let A,e(A’, ") be such that the following

conditions hold: '
(a) ®(A,)=0 and ®(2) changes its sign at A.;
(b) 1, (T; A)#1 for keZ\(0) and A in a certain neighbourhood of A,.

Then A, is a regular asymptotic bifurcation point for the solutions of
equation (3). '

Proof. Let 3 be the identity operator in C(T). The conditions of the
theorem imply that there is a neighbourhood A’ of 4,, A’ c A, such that, if
AeA'\{4,} then the completely continuous vector field I—P’'(c0, T; ) is
non-degenerate in C(T),i. e. P’'(co, T; 1) has no non-trivial fixed points in C( T).

From (a) it follows that for an arbitrary £> 0 there exist 1, 4, €A’ such that

Ay—8<A <Ay<Ay<Ay+s,

and *

(6) ®(4,)®(4,)<0.

The absence of non-trivial fixed points of the asymptotic derivatives
P’'(c0, T; 4;), i=1, 2, implies that there is a constant R(4,, 4,) such that the
relations

(M TGP (. T: 4) Sg)=ind (0, J—P'(0, T; 4,)=(—1) 4, i=1,2,

are true for every R with R=R(4,, 4,). Here, by I' (-, -) we denote rotation of
vector fields (see [4]), p(4;) is the sum of the algebraic multiplicities of the greater
that 1 cigenvalues of P'(c0, T; 4,;), i=1, 2, and Sx={xeC(T): || x|| <R}.
Further we suppose that R=2R(4,, 4,).
From (5) and (7) it follows

-1, ®(4,)>0

1, ®(1,)<0’ b=1.2

®  T@-B(.T:4) s,)={

Then (6) and (8) yield
() CE@—P(. T 4) ST (S—B(-, T; 4,), Sp)

It is not difficult to see that ® ( T; A) is uniformly continuous with respect to A.
Therefore :

{U B T: 1):4eld,, 4,), xeM},
‘'x, A

is a compact set in C( T) for every bounded M < C( T
This allows us to use the homotopic invariance of I'(-,").
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Now, if we assume that for every 1e[4,, 1,] B(-, T; 4) has no fixed points in
9 S, then the completely continuous vector fields I—PB(-, T; 4,), i=1, 2, should
be homotopic on 9 S, which contradicts to (9).

Thus we obtain that for a certain 1€[4,, 4,] there is a solution x of equation
(3) with | x||=R. =

Remark 1. In the case when (4) holds uniformly with respect to Aand 1¢SP
for A€ A, one can prove that equation (3) has a solution for every 1€ A and the set
of all these solutions is bounded in C(T), i. e. the problem for asymptotic
bifurcation has no solution in A. It is clear that 13 u, ( T; 2) for every sufficiently
large | k |. Moreover, only the eigenvalue yu,( T; 4) is certainly real number which
justifies the conditions of theorem 1.

4. High frequency non-negative forced oscillations

In this section we assume additionally that the inequality

(10) St Yy ¥ousses Wi )20, teR!, AeA,
holds for y,20, 1<i<l, and '

(11) L©; )M(0; 2)>0, A€A.

Besides, we assume that the functions «,(-; 4), 1=isl, A€A, are non-
decreasing.

It can be shown that (11) implies the existence of a constant T, such that the
relations

L (IT; )#0, KeZ, A€A,
Gt T; )=g>0, teR!, ieA,

are true for every T with 0<T=< T,

From (4) and (10) we obtain that a,(1)=0, 1<i<lA€A.

Let K* ( T) denote the cone of the non-negative functions in C( T). Now it
is clear that if 0<T<T, and ue K*(T) then B(-, T; 4) and P’(c0, T: 1) are
positive operators with respect to the cone K* (T). A

Further we assume that 0<T=< T,

Definition 2. The number 4, € A is said to be a regular asymptotic bifurcation
point for the non-negative solutions of equation (3) if 4, satisfies definition 1 and
x[A(R, &)]eK*(T). ‘

Theorem 2. Let ueK*(T) and let A,e(A’, A") satisfies condition (a) of
theorem 1. Then A, is a regular asymptotic bifurcation point for the non-negative
solutions of equation (3) .

Proof. Since the condition (a) of theorem 1 holds we obtain that there is a
neighbourhood A’ of 4,, A’< A, such that if A€ A’ then uy(T; 1)>0, besides, if
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A#A4, then uy( T; A)#1. In particular, P’'(co0, T; 4), A€ A’, is a “strong” positive
operator with respect to the cone” K* ( T) (see [6]).
Now, the equality
PB'(0, T; De()=po(T: He(®). e()=1,
implies that if A€ A’, then
r(P' (o, T; )=po(T; ),

besides, if 4 # A., then the positive vector field J— P’ (co, T; 1) is non-degenerate
in K* ( T). Here by r(-) we denote spectral radius.
Let K% ( T) be the cone defined as follows

K (T)={xeK*(T): minx(t)= g/G maxx(t)},

where G satisfies the inequality
G(t, T: )=<G, teR!, leA.
It is easy to see that &(T; ) K*(T)c K!(T). Then
G(T: A% K(Th< KS(T).

for every operator & which is positive with respect to K ( T).

Thus we obtain that (-, T; 1) and P’'(oo, T 1), A€ A’, are positive operators
with respect to the cone K& (T).

At this point we denote

={xeKi(T): x| <R}, 0Sx ={xeKJ (T): | x| =R}.
Let ).,, ).2 are chosen as in the proof of theorem 1. Then according to the
general theory of the positive operators (see [4],[6]) we have

1, ©@1,)<0
0, ®(4,)>0’

The asymptotic linearity of B(-, T; 4;), i=1, 2, along with the latter
conclusion imply that there is a constant R(4,, 4,) such that the relations

(12) T[3-B(. T: &), Sx]=ind (0, P'(c0, T: 4,); K (T))
#ind (0, P'(c0, T; 1,); KJ (T)=T[I—=B(-. T: 4,), S§].

are true for every R with RZR(4,, 4,), where by I'[-,*] we denote rotation of
positive fields.

Further we suppose that R=R(4,, 4,).

If we assume that for every A€[4,, 4,] the completely continuous positive
vector fields I—P(-, T; A) are non-degenerate in S5 then they should be
positive homotopxc on dSx which contradicts to (12).

Hence there is A€[4,, 4,] such that equation (3) has a solution xe K} (T)
with | x||=R. =

ind (0, P'(o0, T; 4,):K% (T))= { =1, 2.
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Remark 2.In fact, in the proof of theorem 2 we showed that for an arbitrary
M there is a value of the parameter for which equation (3) has a solution
xeK* (T) with

min x(t)=M.

This corresponds more to the object of our problem and justifies the
introducing of the cone KJ ( T).
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