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by Reciprocals of Polynomials’

Drago J. Michalev

Presented by Bl. Sendov

Estimates for Hausdorff approximations of functions by reci%roca.ls of polynomials are
obtained in this paper. These results are further development of the results of A. Levin and
E. Saff for uniform approximation. .

1.Introduction

Denote by Ry, the set of reciprocals of algebraic polynomials of degree
< n, and let RT,, be the set of reciprocals of trigonometric polynomials of
degree < n. ,

A.L.Levin and E.B.Saff[5] have considered the question of approximat-
ing a real-valued continuos function f on [-1,1] by reciprocals of polynomials
with real or complex coefficients. While no restrictions on f are necessary for
the approximation by reciprocals of complex polynomials. It is obvious that
if we limit ourselves to reciprocals of real polynomials we must assume that f
does not change its sign in the interval. Under this assumption it is shown in
[5] that one can approximate f (# 0) by reciprocals of real polynomials at the
rate w( f, 1/n), where w(f, -) is usual modulus of continuety of f. Namenly they
show that

™ L If = roall < (£, 1/n).

D.Leviatan, A.Levin and E.Saff [4] have improved the above esti-
mates by replacing w(f,1/n) by the Ditzian-Totik [2] modulus of continuety
wy(f,1/n) and have also obtained estimates for L, approximation of f € Lp41
in terms of wy,(f,1/7)p41- v :

Recently, R.A.Devore, D.Leviatan and Xiang Minc Yu [1] have
estimated the error in L, approximation for all f € L, replacing w,(f,1/n)p+1

by we(f,1/n)p. -
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The purpose of this paper is to obtain estimates for the Hausdorff approxi-
mation by reciprocals of polynomials. Obviously, the results for L, a.pproxxma-
tion by reciprocals of polynomlals are analogues of the results for L, approxi-
mation by polynomials. It is well-known that from the results of trlgonometmc
polynomial approximation it is possible to deduce estimates for approxjmatlon
by algebraic polynomials. Therefore, it is sufficient to consider only approxi-
mation of 27-periodic functions f by the elements of RTp ,,.

2. Preliminaries

Let ¢(z) = (1 — 2)~1/2 and set

f(@ + (R/2)p(2)) —f(z - (h/2)p(2)),
Anpf(2) = { if 2 % (h/2)p(z) € [-1,1,
0, otherwise.

Following Z.Ditzian and V.Totik [2], we introduce

Definition 1.
wy(f,t) := sup ||Anpflleo
O<h<t

and

we(fyt)p = sup llAh¢f||P
where || - || denotes the sup norm over [ 1 1], and || - ||, is the L, norm
over [—-1,1].

Let Bg be the set of segment functions defined on Q, Ag be the set of
real bounded functions defined on 2 and Ay, is the set of 2r-periodic bounded
functions. It is easy to see that Ag C Bn We shall use some definitions
introduced in [7].

Definition 2. Let f € Bg and § > 0 then we define
’ S(Q,f,&;:z:) i=sup{f(u):z -6 <u<z+6ucQ},
I(Q, f,6;z) ;= inf{f(u): 2 — 6 < u<z+6,u€ N}
Definition 3. Let f € Bq, then the upper Beer’s function for f is defined
by : ‘
| 5, f,52) = lim 5(R;, f,8:2),
and the lowep:Beer’s function for f is defined by

I(ny’;z) = sl_i’tilof(ﬂ,f,G;z)-
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Definition 4. The complement graph for f € Bq is defined by
F(f,z) = [I(f,=),S(f,z)].

Definition 5. The Hausdorff distance between f € Bqg and g € Bg with
parameter a > 0 is defined by

T(Q a;, f’g) —ma.x{rl(Q Q; f)g)7rl(n a,g,f)}v
where 71(Q, @; f, g) := sup,eq infyen{max(|z — y|/a, | f() — 9(3)])}-

Definition 6. The Hausdorff distance between f € Aq and g € Aq is
defined by r(Q,a; f,9) := r(Q, a; F(f), F(g)).

Definition 7. The Hausdorff modulus of continuity“with parameter a > 0
for f € Aq is defined by

T(Qa a, f; 26) = T(Q’a; S(w’ £ 6)’ I(Q’ £, 6))

We write only 7(f,-) and 7(f,g), when @ = 1 and Q is known. In this
paper we shall use the generalized Jackson’s operator Jp, , (mr < n), which is
defined by

Inai2) = [ e+ 0K, (@) at

where

K?n,r(t) = 7m.'er'r(t)’
_ ( sin(mt/2) 2r
Km(t) = (m) ’

and vy, is determined from 1 = Im (1)
We shall use some well-known statements.

Theorem A. (S.Tasev [8]) The followmg inequalities hold true
(’) 'Ym,r < < 2= 2r=lypr2r—1

x3 2r—-1
(i) [ K3 .(t)dt< (m) /(4(@2r-1)), forr>1,d>0;

- 2r—-1
(ii) [T K2, (t)dt < 76 (2—’:;3) /(4(2r —2)), forr>1,d>0;

2 \ 2r-1
(iv) [FKS (t)dt < b (-2%3) /(4(2r - 3)), forr>3,d> 0.

Theorem B. (Bl.Sendov [7]) Let f, g, zy, ¥ € Aq and for every z € Q
we have p(z) < f(z) < P(z) and p(z) — ¢ < g(z) < ¢(z) + ¢, where ¢ is a
constant. Then r(Q,q; f,g9) < (R, a;0,%) + ¢.

Theorem C. (S.Tasev [8]) For every bounded, 2xw-periodic function f
and for every integer q, q > 1, there exists a function F, F € Cy,, such that:
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(i) r(f,F)<2n/q,

(i) w(F,6)< w(f,2r/q), for & < 7/(4q),

(isi)) F is x/( (2¢9) — monotone function,

which means that F is monotone function on every interval with a length

< /(29).
We shall need the following simple lemma.

Lemma 1. Let f € A2 and f > 0. Then the inequality

Pil(f,2) < / f(z+ KO, (£)dt, where ppy(2) = Jmr(f~,2)

holds true.
Proof. From the definition of K3, .(t) we have

g 2 T 2
1= (/ K2 (1) dt) = (/ P2z + )2 (2 + )KS, (1) dt) .
Using Holder’s inequality we get
1< pme®) [ fz 4+ OKS @),

which implies the lemma.
Let HE(U,A, f) be the best Hausdorff approximation of function f by
elements of the set U on interval A.

3. Main results

Theorem 1. For every f € A[_1,1) which does not change sign we have

In(e + nw(f, 1/n))
n

HE(IZO,na [_ls 1]; f) <c

where c is an absolute constant.
Theorem 2. For every f € Aax, which does not change sign we have

In(e + nw(f,1/n))

n

HE(RTon; f) < ¢

where ¢ is an absolute constant.

Proof. Suppose that f > 0 (otherwise we consider the function — f instead
of f) and f is nonconstant (the case when f is a constant is clear).
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We use an intermediate approximation of f by the function F, given by
Theorem C. In addition, we observe that F satisfies the folowing identities:

ir;f f(2) = ix;f F(z),
sup f(z) = sup F(2).

For these reasons we consider a function f (f € Car, f > 0), which is
26-monotone.

Let g(z) := f(z)+ é where 6§ > 0, and will be determined later on.

It is obvious that g is positive in every point.

Put p(2) := pm r(2) := Im(1/9, 2).
As in [4], we consider two sets,
E, := {z € [-7,7): 1/p(2) > g(2)} and E; = [-7,7)\E;.
Next, we shall estimate 1/p(2) from above and below at any 2 € [—7, 7).

Case 1.z € E;.
Because p(z) satisfies Lemma 1, applying the inequality

w(g,t)/t < 2n.w(g,1/n),
for t > 6 > 1/n and combining it with Theorem A we have
™
0<p7(2) - 9(2) < [ (9(z+1) - g(2)) K7, (2) dt
-7
é g
< [ (s +0) = 9K, (1) dt + dmo(g,n™) [ K, (1) at
-5 5
52

2r-2
< 5(6,9:2) - 9(2) + dnuo(g,m ‘)w6(2 6) /(4(2r - 2)).

Hence

2 2r-2
(@) 16,9:2) < 1/p() < 5(6,0:2) + nolo, 1/ mym (3o 6) /(2r - 2).

Case Il z € E,.
Sinse p(2z) > 0 and g(2) > 0 using the definition of p(z) we obtain

* ) 6
1= / ((2)9(z + )" KO, (1) dt > / ((2)9(z + 1))~ KO, (t) dt.
- -6

Using the definition of E; we get
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0<9() -p) = [ (p(2)9(z) — 1) /p(2) K, - (2) dt
= [ 6t2) ~ s+ )/ (edotz + ) Kb (01t

o(2) = 9z +1) o " 19() = 9(z +1)
</ NCARLS Kom '("""*/6 ~ GG +D
7

<9(2) - 1(59,2) + |

9(:)KS, . (1) dt

) dt

m,

g(z T g(z+t)

Ig(z) g(z +t)| KO r(t) dt

9(z+1)
-6
+/ |g(z) (zg-('-zt')*' t)l K& ,.(t)dt
-6
+ [T 102) = ote + OKS, @t + [ lo(e) = ole+ DI, ()t

<o) - 16,5 +2 e, OF/9(z + K dt +2 | " (g, O)KS, . (t) dt.

By applying g(-) > 6 > 1/n and the inequality w(g,t)/t < 2nw(g,n~!) we
obtain

1/0(2) > 16,9:5) =2, 1ol O KS, )/ -2 [ (0, 0KS, (0

> I(6,9;2) — 8./616'1(114.:(9, l/n))"'t’Kg,.,.(t) dt — 4/' nw(g, l/n)tK,‘L,,.(t)dt.
]

By using Lemma A we obtain

2r-1
/o) > 16,6%) ~ 8 (w00, ) 2r (o) /(2r=9)
(3) 1 xz 2r—-1
— (g, 2yms (m) /@2r - 2).
Choosé -

r = [In(e® + c.;n.w(g, 1/n))],
m := max{k: kr <n < (k+ 1)r < 2kr}.

Set § = x2e/(2m), then 1/e = x2/(2mé). It is easy to see that 2r —3 >
r >3 and
: x2er/(2n) < 6 = w2e/(2m) < 7ler/n.
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From inequality (3) we obtain

1/p(z) > I1(8,9;z) — w?(g, 1/n)e~%r§2men?/(2r — 3) — w(g, 1/n)e" 2 6men/(2r — 2)

) w?(g,n"')n%n3e22 w(g,n")nn3e?
2 1(6,9:2) - 2(2r — 3)(e3 + cw(g,n"1))? ~ 4m(r — 1)(e3 + cw(g,n"1))?
. (w(g,n"Y)ewn)?n w(g,n")nmenle
2 1(b,9:2) = (& + cw(g,n-N)n)?n (€3 + cnw(g,n=1))?2n
> I(8,9; 2) — (me/c)?n/n — (we/c)(x’e/2n)/(e® + cnw(f, 1/n))
e?n3 e2n3

.>_ 1(6! f; Z) - (63 + cnw(g, 1/n))2cn - cn

> I(8, f; 2) — (x2e/(2n))(x/(e*c) + 2me/c?).

Choosing ¢ such that m/(e%c) + 2me/c? = 3 we obtain

@) P 2 16 i) - S 2 106, £2) = 6.
By the definition of E; .
(5) 1/p(2) < cg(2) = f(2) + 8 < S(6, f;2) + 6

hold true .

This completes the proof of the second case.

By inequalities (2), (4), (5) and by the choice of the numbers m, r, ¢ and
d we have for every z -

I(8,f;2) - 6 < p~'(2) < 5(6, f32) + 6.

By using Theorem B and by the elementary equality w(g,:) = w(f,*)
Theorem 2 is- proved.

Theorem 1 follows from Theorem 2 if we set z = cosz and from the fact
that J,, » is ay even trigonometric polynomial.

If we use the method from [6] and [3], it is posible to obtain better result
in terms of wy,(f,1/n). ,

Theorem 3. For every f € A[_1,1}, which does not change sign we have

In(e + aanp(f’ 1/n))

HE(RO.'M [—1’ 1],0; f) < cw¢(f, l/n) e+ a'nw(p(f, l/n)

Remark. Theorem 3 implies as a — 0 the coresponding result in [4] for
a uniform approximation by elements of Ron.
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