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Presenled by Bl. Sendov

We provide an existence and uniguengss theorem for a class of quantum diffusions acting
on a subalgebra of the algebra of bounded linear operators on the Finite-Difference Fock space.

1. Introduction

The existence and uniqueness of quantum diffusions acting on the algebra
of bounded operators on the Heisenberg Fock space was proved by Evans [6]
with the use of the stochastic calculus of Hudson and Parthasarathy [8].

The Finite-Difference (FD) Fock space F, which is based on the FD Lie
algebra of Feinsilver [7], was constructed in [2], [3] and it was equipped with a
stochastic calculus in [4].

In brief, if S denotes the set of step functions [0,00) — (-1, 1), the FD Fock

space F is defined as the Hilbert space completion of E &ef span{y(f)|f € S}

with < y(f),y(g) > = exp(— [;"log(1 — f(s)g(s))ds). The y(f)’s are called
the “exponential vectors”. For each f € S the FD operators P(f),Q(f),T(f):
E — F defined by

(y(g+ €f) + y(e‘f g)) (weak derivative)

=0

P(f)u(g) = ( / Z f(t)e(t)dt + Q(fa)) w(g)
T(f)u(e) = Q) + P(f) + / ~ ft)dt) ()

Q(f)y(g) = ;,,a;

satisf
Y P Q@) = [P T = [T(F), Q)] = T(f9)

which are the commutation relations of the FD algebra.
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a

- The basic integrator processes of the FD stochastic calculus are ”time” t
and

M; k() E QO (x10,0)T7 (x10,9) P® (X(0.)

where t > 0, (4,7,k) € N3 and () = z(z — 1)...(z — i+ 1), z(®) = 1. Their
stochastic differentials can be multiplied using Tto’s formula: dM; ;k(t) - dt =
dt - dM; ; k(t) = 0 and for (¢,5,k),(I,J, K) € IN3

u min(i,v) min(K,7)

dM; ;i(t) - dM1 s k() = EZZZ )R S T Y

A=0u=0v=07=0 o0=0 p=0

(G0 E)E)

x (k — p)liA=VIE"ol pl dMiy5—0,j4 0 41-2K47-p(2)
— M ;k(t)dM1yk(t) — MI LK () dM; ;k(t)

=
\
|I
?:.M

=1 G xh,g = Y31 bxn €S, (5,5,k) € N3, 6 is Kronecker’s

6i06k,0 (650 + (1= 850)(5 — 1)), if s € Us4 In
59 got 2 ; k(3)gi(s i+ 5
T k(8) = (1= bipjuko) - (i + 5+ k= 1)1 L AL (L)
if s € U=y In

1L E (1 = bari0)(1 = 6450)(1 = Sy4k,0)-
[(1 = 6i6,.0,0)(1 — 8j55.0,0)(1 = 6ks,0,0) + (1= bis,0,0)(1 — 8j550,0)0k5,.00 +
+ (1 = 8i5,,0,0)0565.0,0(1 = 8k6,,00) + 6i6,,00(1 — 8550,0)(1 — ks, 0,0) +
+(1—6i5.,0,0)8565,04+k6,,00 + (1=8155,0,0)0i60,04+k81,00 + (1= 8k5,.0,0)0i6 0+i60.00]

and X = {X(s): E —» F|s 2> 0}isan ada.pted process, in the sense of
Hudson and Parthasarathy [8], for which

E 25 By wi“i’:o ksz’:n (160. o) (.76ﬁ o) (kiz,o) ) /0 o {'3,1( (s)

o,8,v€{0,1} I=1 J=1 K=1.

X < X(8) Maipjk(8) Mis, o—1,65.0-Jk6,,0-K(3) ¥(f) y(9) > ds

makes sense, then X is called M; ;. -integrable and the expression above is
denoted by < [y X(s)dM; ;x(8)y(f),y(g) >.



Quantum Diffusions on the Finite-Difference Fock Space 11

If A is a unital x-subalgebra of B(F) (the algebra of bounded linear op-
erators: FF — F) then a “quantum diffusion on A” is a family {6:(z) : A —
B(F)|t > 0} of identity preserving contractive x-homomorphisms satisfying
for each z € A: '

t
S(z)h = ah + 3 / 8o(Mijp()) dMi jp(s) h for all b € E.
(i.gk)er 70

Here A is a finite subset of IN3 and the ;s are maps from A into itself
called the “structure maps”. In order for such a family to exist the structure
maps must satisfy certain conditions known as the “structure equations”. The
method used in [6] to derive the structure equations in the Heisenberg case was
based on the fact that the basic integrator processes were linearly independent
in the sense of Accardi, Fagnola and Quaegebeur [1] along with an injectivity
assumption on the é;’s. Due to the complexity of the Ito’s formula in the
FD case, Evans’ method is difficult to employ and so we replace the structure
equations with an iterated integral condition.

We remark finally that Mo o is a quantum exponential process (cf: [2], [3],
[4]) and the study of such diffusions appears naturally in the study of quantum
systems in the presence of “exponential noise”.

2. A fundamental integration formula

The most commonly used method for obtaining strong solutions of quan-
turi SDE’s is Picard’s method of successive approximations which in order to
be employed requires, in our case, the existence of a bound on expressions like
Mg X () dM; ; k(s) y(f)|| where t > 0, (5,5,k) € N3, f € S and X is a

i.j.k-integrable adapted process.

To get such a bound we provide a formula for the combined matrix element
< & X(s)dMiju(s)u(f) , f& Y(s)dMisk(s)y(g) > where (I,J,K) € IN3 ,
g € S and Y is a M jk-integrable adapted process. The proof of the formula
relies on the following lemma whose proof is based on the “independent incre-
ments” property of the FD algebra (cor. 1.13.1 of [2]).and is similar to that of
lemma 3.2 of [4].

Lemma 2.1. Let f = 3 %_, axXxa,, 9 = 2 a=1 PrXxa, €5, let A,B
be disjoint subsets of [0,00) with finite Lebesgue measures u(A), u(B) and let
(3,5, k), (I,J, K) € N§. Then:
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< QY(z4) TI(z4) PM)(z4) Q) (zp) T () PK)(zp) y(f) , wl(g) >-
8i,0 8k,0 61,0 6k,0(1(A)); (6(B))s < y(f),¥(g9) > ,if (AUB)N(UT_,A,) =0

al Bl (1+axg) +7(148,,) +K
5:,08k,0(1(A)); (1(B)1+ 14 K ===~y ®—— < (/). v(9) >
if B C A, for some Xo € {1,2,...,n} and A Nn(UR., Ax) =0
ak gt (14a )i+i(1+p )J'+*
51,0 6x,0(#(B)) s (1(A))igjpx —2 “(’,_aa:';,‘o)..,,.,,:" < y(f)v(g) >
=1 if A C A, for some Ao € {1,2,...in} and BN (U}_, A5) = 0
aX Big(1+axg) H(148,,)7+*
((A))iti+k (1(B)) 1474 K —2 A?l—ax:;a,,)'“““
aK 81 (14ae, )1+ (148, ) +K
£ .‘.n(l_a‘:p‘n )I+J+Ko <y(f)v(g) >
\ if AC Ay, and B C A,, for some Aol € {1,2,...,n}, Ao # .

Here (u)n = p(p+1)...(p+n—1) and (p)o = 1.

Theorem 2.1. If (i,5,k),(I,J,K) € N3 and X,Y are respectively M; ;,
M j Kk -integrable adapted processes then for all f,g€ S andt > 0:

t t
< / X (s)dM; ;. x(3) y(f) » / Y(s)dM;, s,k (s)y(g) > =
) o

i6%:0 j6P:0  k5V.0 [5%.0 jgb0 [rge,0

= '_ 0?,p,106,b,e is?,o

i I min(K',v)

R RN 3 ) [ 35335

A=0 u=0 v=0 r=0 o=0

3 i OO OEI O O -

p=0
t .
x J'(X—v)j'(l‘-") ol p! / ok”+3—a,l'+j'+i'—4\,k’+f—p(‘) < X(G)Ma."pj‘..,k(”
o

X Miso 0=i?,565,0—5' kby,0—k (8)U(S) ) Y (8)Mar bs.ck ()Mis, o155, -3, K5, oK' (8)¥(9) > ds+

t ¢
+ / / oli% () ok? 4 (W) < X(8)Mai g5,k (8)Mis, ot jsp ot k6 0=kt (B)W(S)

o Jo

Y (W)Mar,6,ck(W)Mrs, 016,16, o 1" Kbe0— k! (@)y(g) > dsdw] .

Proof. Asin lemma 4.1 of [4] let
dm; k() = (d(QM)(s) + §i0 - Id) - (d(T?)(s) + 85,0 - Id) - (d(PP)(s) + b1 - Id)
where Id : E — E is the identity operator. Then by definition 4.1 of [4]
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< [ x@dMise@un) . [ ¥(©)dMisx(©)ute) > =
0 0
= > D (1= ba4i,0)(1 = 8p45,0)(1 = 8y4k,0)(1 — Sasr,0)

a,8,7€{0,1} a,b,c€{0,1}

X (1 —6p40,0)(1 —bc4k0) - < /o' X (8) Mai g ~k(8) dmis, o.56p.0,k6..0(8) y(f) ,

t
/ Y (8) Marps,ck (8) dmys, o,05,,0,K5.,0(5) y(9) > =
(1] .

= S > (1= 6a440)(1 — 6p45,0)(1 = 8y41,0)(1 — batr,0)
«,8,7€{0,1} a,b,c€{0,1}

n—-1 n-1

X (1= 8p420)(1 = besro) - lim 3 > < X(se Mai,pjir(se)
=0 A=0

x [d(Q(fﬁa.o))(St)d(T.i6a,o)(St)d(p(k&..o))(s[) + 6k6,_°,0d(Q(“°'°))(3t)d(Tjo“")(81)+

+ 6565,0,0d(QU=2))(se)d(P*47))(5¢) + 8i55,0,04k8,0,0d(QF4=2)(52)+
+ iba,0,0d(T%%:0)(5¢)d(P*49)) () + 8is, 0,04 k85,0,0d(T78:2)(50)+

+ 6;6,,o.o+j6,,o,od(P(“""))(St)] y(f),

Y ($)r Marpserc(s2) [d(QU9)(52)d(T7%2)(s2)d(PUK5)(s3)+

+ 8K5.,0,0d(QU%))(82)d(T? %) (82) + 615,.0,0d(QU %)) (52 )d(PK 40D )(5))+
+. 6160,0,0+K5.,0,0d(QU*))(83) + 615, 0,0d(T7%°)(82)d(PF ) (52)+

4 6150,0,04K6.,0,0d(T7%%°))(s2) +5n..n.o+u.,n,od(P(m""’))(SA)] u(q) >

where 7 = {0 = s, 31,32,...,8, = t} is a partition of [0,¢] and the proof is
completed in a way similar to that of the proof of lemma 4.1 of [4] by using the
linearity of <, >, distinguishing cases A = £ and A # £ and applying lemma 2.1
to compute each term.

3. The structure maps

Let A C IN3 be a set of cardinality |A|] < oo such that (i,j,k) € A &
(k,7,i) € A and let A C B(F') be a unitial x-algebra. We assume the existence
of a family {\ijx: A — A/(i,5,k) € A} of “structure maps” such that:

(a) Aijk is linear.

(b) For each z € A, [\ jk(2)]* = Ak ji(z*)-

(c) Aijk(I) =0, where I € A is the identity.

(d) For each z € A,f € S, o,8,7 € {0,1}, 1 < ¥ < iba0, 1 < j' < jbp,0,

1 < k' <kéyo and t > 0 there exists v; > 0 (depending on them) such
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that for every B = {B; : A — L(E,F)/t > 0} with {B,(z)/t > 0}, a
strongly continuous adapted process

1Bt (X5, (2)) Mo o5,k () Misa,0-it,j6p,0-5" by,0- k' (Y(F)I] < 01| Be(2)w(A)I-

Here L(E, F) is the space of linear operators £ — F.

(e) For each 7 > 0, v, & SUPg<icr Vt < 00
For each 7 > 0 and f € S, we define

€24 3 ¥ enf

(i,d,k)€EA a,8,7€{0,1}

FEEEEE e

=1 j'=1 k'=1 I'=1 J'=1 K'=1

(EELETEE e (0)

A=0 p=0 v=0 7=0 o=0 p=0

C)EENCCI s

X sup la{('f_“,_’ Trajrait=akigr—p(8)] + T sup l"!'i'l,k'(s)“j'{,.n,z'(“’)I] v?
0<s<T 0<s,wsT

(f) With a,, = (zn,]n, ﬂ) € A, we assume that for all z,y € A,t > 0 a.nd
f[,9€S

< [:wz ) / / .Aa,(zy)aM«.(u)---dMa.(u)] ¥(f), 9(g) >

k=1 ay,...,ax €A

—<[u+2 [ M»\..;~--'\g;(y)dMa;(tz)---dM..;(tl)]v(f).

o

tm-1 *
[z* / / Aat, o+ Aal (=*)dMgy (tm) . .. dMall'(t;)] y(g) > =
mtl a,....aln €A

where o =t and the mﬁmte sums converge in the weak sense.
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4. The existence and uniqueness theorem

Lemma 4.1. (Gronwall’s inequality): Let A > 0 and let f,g : [
[0,00) be continuous and such that f(t) < A + f: f(3)g(s)ds for a
Then f(t) < XA -exp([ g(s)ds) fora <t <b.

Proof. The proof can be found in [5].

b —
t<b.

Lemma 4.2 Lett > 0, and for each (i,j,k) € A and z € A let {A,(z)|0 <
38 < 1} be a strongly continuous adapted process (i.e. for each f € S the map
8 — As(z)y(f) is continuous). Then for each f € S andt € [o,7]:

I [ A )aMa DN < (Gsn? sup AU
(1] 0<t<r

where ; jk is defined by € = 2|A| X; ; kyen Ciik-
Proof. By theorem 2.1

t
I / Au(ijx(2)) dM: 54() v (DI
—< / " A a()) M n(8) 9CF). / " Au(iia(=)) M ja(s) 9() >
[1] 0
< Gk / I4,(2)y(F)%ds < 7Gx sup [|Ae(2)y( ).
. o o<t<r

Theorem 4.1 Let A,A and {A:A—> A/(,j,k) € A} be as in section
3. There ezists a unique family {6, : A —» L(E,F)/t > 0} such that

(a) For each z € A, {6:(z)/t > 0} is a strongly continuous q’dapted process,
linear in z.

(b) For each z € A, §o(z) =z and for t >0 [6:(z)]* = &:(=*).
(c) For eacht >0 &6:(I), where I is the identity of A.
(d) Foreacht>0 andz € A,
5:(z) = 2+ (i jmyea Jo 02 (i 1(2))dM; j x(s) in the strong (pointwise) sense.
(e) For eachxz € A andt > 0, 6,(z) eztends to an operator in B(F) such
that ||6,(z)|| < [|=[l- :
(f) Forallz,y€ A andt >0 &(zy) = 6:(z)b:(y).

Proof. Let7>0. Fort € [0,7] and z € A define {6',,(::)};‘,"_0 by the strong
equalities 673(z) = z and forn > 1

6: (2)=2z+ Z / 05,n-1(Ai k() nd.J.k(s)

(4,5,k)EA
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Clearly {67y(z)|t > 0} is an adapted strongly uniformly continuous process on
[0, 7]. By theorem 2.1

(8¢ n(2) = b n(2))Y(NII? < € sup (167 ,_1(z)y(HIP |t - ¢'|
0<s< T
and so, by induction, {67,(z)|t > 0} is an adapted strongly uniformly con-

tinuous process on [0,7] for all n. Moreover, using theorem 2.1, we obtain
iteratively
(V&r

B IEa(®) = @I < LD el -l

Thus 3577, ||(67.(2) — 67,._1(2))y(f)|l converges for each z € A and f € §
uniformly on [0,7] and we may define {67(z)|0 < ¢t < 7} as the uniform limit
67 (2)y(f) %! Jim,, 67 .(z)y(f). The process {67(z)|0 < t < 7} is adapted and
strongly continuous. By the triangle inequality

e -=- > [ C 7 x(2)) dMas a8V

(i.j.k)EA
t
S IF @) = Epaa @D+ 3 1 [ (@ = ) usr(2) dMiga( (DI
..k 7O
T _sT 1/2 1/2 T _ 5Tz
< 2 (67 (=) = Epa @DV + 7 (.-,,-%:EA Gik 2up & = S @UAI

(by lemma 4.2) which goes to zero as n — oo. )
Thus §7(z) = 2+ X (i jmen Jo 2(Xiik(z)) dMiji(s) on [0,7] and if 57 (z)
has the same property then

. t -
(67 (=) = 87 (=)u(HI* < E/O 163 (=) — 85 (=2))y(NII* ds

and by lemma 4.1 67(z) = é](z) on E. For each z € A and t > 0 let
6¢(z) = 67(z) where 7 > 0 is such that 0 <t < 7.
The family {6;|t > 0} satisfies (a)—(d). By using condition (f) of section 3
and the definition of 67 (z) we see that for each z,y€ A, f,g€ S and >0
< &:(zy)y(f), y(9) > = < 8e()y(f), 6:(z*)y(g) > .

Moreover, by theorem 2.1 and lemma 4.1

16:2)y(NIP < 2MelPIlu(H)I? + € / 16:(2)y(f)|Pds
< 2||zllly(f)I? exp(€ / ds)
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and so forevery z € A and f€ S
sup [18@)y(NIl < V2lzllly(£)ll exp(ér/2)

Using this bound Evans’ proof of proposition 5.1 of [6] carries word for word to
the FD case to prove (e) and (f). )
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