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On Certain Transformations of Generalized
Fractional g¢-integrals, II
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Presented by P. Kenderov

Recently, in [5] we defined and studied two generalized fractional g-integral operators
which generalize the known fractional g-integral operators due to W. A. Al-Salam [2], R.
P. Agarwal[1], M. Upadhyay [7], W. A. Al-Salam and A. Verma [3] and the anthor
[4). Further, in [6] we obtained certain transformations involving these generalized fractional

-integral operators. The aim of the present paper is to obtain some more transformations
involving these operators.

1. Introduction

Recently, the author [5] defined and studied the following two generalized
fractional g-integrals:

Ii[(a); (b);w, Ay 2y 31 : f(2)]

(1) _ T 1T e g (e) (a); w"z“t“/z;‘ .
= T e aeg [ | raeso)
and
K,[(a); (b);w, X 2,450 ¢ f(2)]
(2) —M P mma-r gl [(a); whrzrze /v .
T (-9 /_,.t ‘Q’; [(b); ]f(t)d(t’q)'

(i) For A = u = w = 1, the operators (1) and (2) reduce to the operators
due to M. Upadhyay [7].

(i) ForA=1l,p=mw=¢*!,B=0,A=1,a1=-a+1and z = q,
the operator (1) reduces to an operator due to the author [4] which on further
putting m = 1 becomes an operator due to R. P. Agarwal [1].

(iii) For B=0,A=1,a1 = —a+ 1, A=, p=m,w=¢""1,2=1 and
f(z) replaced by f(zg'~?), (2) reduces to an operator due to the author [4]
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which on further putting m = 1 becomes an operator due to W. A. Al-Salam
(2]

(ivyFor A\=p,w=1,B=0,A=1,a =-a+1,z=4q%¢" =h,

I'y(a) replaced by G,(a) the operator (1) reduces to an operator due to W A.

Al-Salam and A. Verma [3].

In [6] the author obtained certain transformations involving these gener-
alized fractional g-integral operators. The present paper deals with some new
transformations of miscellaneous nature involving these operators.

2. Definitions and notations

The following definitions and notations will be used in this paper:

3) (@) = (1= )1 = ¢**)...(1 = ™" 1) (¢®)o =1,
(4) rq(a) Ei Z%z:}’ (a # 0’ "'ls —2,---),
(5) eofa) =) e L
! =0 (9)- (1 - J7)00’
( l)r r(r—l)/2

(6) Ey(z) = z_: o = (1= 2)osy
@) / Dt 0) = 21— ) 3 g f(za™),

n=0
(8) / ” f(H)d(t;q) = 2(1 - g) D e f(zq7),

T n=1 )

9) / At =1-0) 3 " H@),

n=-—0o



On Certain Transformations of Generalized Fractional g-integrals, 11 29

499((a); (b); 2] = 4®B[¢@; ¢®; 2]

(10) _ — (% )n(g**)n ... (¢*4 )nz™
B ,g) (D)n(g*)n(g%)n - - - (¢*2)n’

lz] < 1.

h(a)
wrz# | A®) s h()
zryH h(d)
(11) ) ;. pl)

3 oo oo w'\mz“"‘x'\nyl‘m[h(ﬂ)]m ﬂ[h(b)]m[h(c)]n
= 2 D TR R F O BT,

m=0 n=0

3. Transformations

This article deals with certain transformations of miscellaneous nature in
the form of the following theorems:

Theorem 1. If f(z) = [5° 24P~ ;&2 [(dy); (er-1); 2 v |9 (v)d(v; 0)
and ¥(z) = I[(a); (b); A\, w; z, A; 0 : f(z)], where h = ¢*, then

(12)

Rr+1+3(a=1)
za—l

o 2 | p@ : h(dr)
¥(=) = 1 = gm+-1y Jg Yo [:";'\ R(1+2+%(a-1) d(y:9),
h(®) ; h(er-1)
provided
(i) lal < 1, lwz| < 1, |z| < 1, RE(X) > 0;
(i1) 22 _ . |gr(1+A—nA=r=a)g(g™)| is convergent
and
(iit) REAy > RUnA+ A+ a — 1) > 0, where ¥ = min(d,, dy,...,d,).
o ¥ _(n) (d,); v
Theorem 2. If f(z) = [ ol ( T ) z> | 9(¥)d(y; q) and
€r—1)
¥U(z) = K,y[(a); (b); A, w; z,A;n: f(z)], where h = ¢*, then
(13)
‘aa a1+ d(a-1)
_ (¢/z)* * h(2) ; h(dr) .
V(@) = G gy /o v 9(y)a™ [ Py I, P d(y; 9),
h(b) h(er—!)
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provided
(i) lg]l < 1, |wz| < 1, |z] < 1, RE(A) > O;
(“) 32 . lgr+B-nA=r=a)g(g)| is convergent

(m) RéXy > Ré(MA + A+ a — 1) > 0, where v = min(dy, dy,...,d,).

Particular cases of Theorems 1 and 2.
Setting A =w =1, a = 8 = ¢ in theorems 1 and 2, we have

Corollary 1. If

i@ = [T ente@ [ EX ] s

and
¥(z) = L[(a); (b); 2,m : f(=)),
then
(14) N
n+c
c—1 oo .
¥(o)= 7o [ v TMo(w)e@ | 2 (@) vivr @) ldwe
7 o " (e
provided

(z)|q|<1 |2l < 1, |a:|<l

(1) 3%, la~™9(q")| is convergent
and

(i%i) R¢(y) > Rl(n+ c) > 0, where v = min(d,,dy,...,dr).

Corollary 2. If f(z) = J5*(2)° +#%h[(dri(er1); L] 9(v) d(viq) and
¥(z) = Kq[(a); (b); 2,m: f(2)), then
(15)

c nte
S ¥(z) = (q/:,,)+c / yo(y) @@ | 4 :; n+et1 () d(y; 9)

provided

(i) |4§:<1 l2| <1, |z] < 1, .

(4) 3°Z, la~""g(q")| ts convergent .

and »

(iii) R¢(y) > Ré(n+ ¢) > 0, where ¥ = min(dy, dy,...,dr).
Results (14) and (15) are due to M. Upadhyay [7].
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Theorem 3. If &(z,y) = I, [(a) (0); A, w; z,p: [1 — 2yq®)—o f(z)] and
V(z) = I;[(a); (b); A,w; 2, u;m : h(z)] then

(16) ¥(z) = (1—%;,;1'[ [Z’, "I"'] /0 e 18(2, y)d(viq),

where
c 1-c /..
CORS 1§ - V)
provided
(i) Ré(a) > Re(c) > 0, |g| < 1, Ré(pn) > 0, Iw zZ¢| <1
and

(ii) the basic integrals for ®(z,y) and ¥(z) converge absolutely.

Theorem 4. If &(z,y) = Ko[(a); (b); A, w; z, 457 : [1 - yq*/z]-o f(2)] and
Y(z) = Kq[(a); (b); A,w; zypu5m ¢ hz then

an  w@=g5 T[00 5] [Trreeniso,

where i .
w@ =T1[*2," %/2 1] s

provided '

(i) Ré(a) > Rl(c) > 0, |q| < 1, Ré(p) > 0, |w"z“| <1
and

(ii) the q-integrals for ®(z,y) and ¥(z) converge absolutely.

Particular cases of Theorems 3 and 4.
Case 1. Setting A =w = 1,y = 1 in theorems 3 and 4, we obtain

Corollary 3. If ®(z,y) = I,[(a);(b);2,m : [1 — zyg®]-a f(z)] and |
Y(z) = Li[(a); (b); z,m : h(z)], then

(18) Y(z) = l—i—q II [2 al_c] /ooo v ®(z,y)d(y; q),

where

T,

TORS | A ]f(z),
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provided
(i) Rt(a) > Re(c) >0, |2] < 1, |g| <1
and
(ii) the g-integrals for ®(z,y) and ¥(z) converge absolutely.

Corollary 4. If &(z,y) = Kg(a);(®);z,79 : [1 — yg*/z]-af(z)] and
¥(z) = K,[(a); (b); z,m: h(z)] then

¥(z) = -(-1-%;1—) l:[ [a;c’ f] /ooo ¥ @(z,9) d(y; ),

where
h(z) = H [:: QIq—,C, V‘I;;‘;? Q] f(=),

provided
(i) R¢(a) > R(c) >0, |2| < 1, |g| < 1
and
(ii) the g-integrals for ®(z,y) and ¥(z) converge absolutely.

Case 2. Setting B=0,A=1,a= —a+l, A=, p=mw=¢*1in
theorems 3 and 4, also taking z = ¢ in theorem 3 and z = 1 in theorem 4, we
obtain

Corollary 5. If ®(z,y) = IKG[1 — zyq*]-a and ¥(z) = IiGh(z), then

1 — o0
. wo=r= I[L *7] [ v,
q
where -
B zq", ¢ /% ¢
we=TI[20 705 9] s,

provided . :

(i) R{(a) > R(7) > 0, |2| < 1, |g| < 1, m is a positive integer

and

(ii) the basic integrgls for ®(z,y) and ¥(z) converge absolutely.
Corollary 8. If &(z,y) = KnGll — y¢®/2]-a f(z) and ¥(z) =
K7%%h(z) then '
ey we=r5 O[5 1] [ eevdwo
1 — q ; a, 1 o b 1) Y

where

h(z) =[] [”ql'"’ ";’;:; | q] f(2),

zq,
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provided .
(i) R¢(a) > Rl(y) >0, |z| < 1, || < 1, m is a positive integer
and
(ii) the g-integrals for ®(z,y) and ¥(z) converge absolutely.

Results (18) and (19) are due to M. Upadhyay [7] and (20) and (21) are
due to the author [4].
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