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After the introduction of weak continuous convergence, weak normality, and wpak‘-
normality we study their properties and relations to continuous convergence and normality of
sequences and families of functions, especially of meromorphic functions.

1. Introduction

If z; and 2, are two points in the extended complex plane €, the chordal
distance (or chordal metric) of 2; and 2, is given by {p. 81,[1]}

|21 — 2|

VA + a1+ [2[?)

Let A be any set in the extended complex plane which is dense-in-itself
and let f;(2), fa(2),..., fn(2),... be a sequence of complex functions, not nec-
essarily analytic nor even continuous, defined on A. Let 2 be a limit point
of A, not necessarily belonging to A, and we consider a sequence of points
21522y.++52n,..- from A converging to zg. We form the sequence )

(1) wn = fa(za) (n=1,2,3,...)

If the sequence (1) converges for every choice of the sequence 21, 2z2,...,2,,... as
described above, then we say that the sequence of functions f,(2)is continuously
convergent at zo {p. 174, [1]}.

It is also known {p.174,[1]} that if a sequence {fn(2)} of functions is con-
tinuously convergent at zo then (I) the limit is independent of the choice of
the sequence {z,} converging to zp, and (II) every subsequence of {f,(2)} is
continuously convergent at zg. i

!
Let now C} be the circular disk defined by x(z,20) < B k=1,2,3,....

Suppose that Sy, is the chordal oscillation of the function f,(2) on the set
ANCy ie., Spk = sup{x(fu(2’), fa(2")) : #,2" € ANCi}. We then form the

x(z1,22) =

*
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numbers 6 = limsup,,_, Snk, £ = 1,2,.... Since C(x41) C C}, it follows that
for every n, S,(x41) < Snk and so ;1 > 62 > 63 > ... holds. Hence the limit
6(20) = limg_oo 6k exists, it called the limiting oscillation {p. 175, [1]} of the
sequence of functions {f,(z)} at the point 2.

The sequence {f,(2)} is said to be normal at z, if and only if §(z) =
0 {p. 178, [1]} and the set S of all points zo at which {f,(z)} is normal
is called the normal kernel of the sequence {f.(zJ} {p. 178, [1]}. Further
{fn(2)} has a subsequence which is continuously convergent at every point of
S {p. 178, citerl}.

A real-valued function f(z) of a complex variable z defined in a domain
G C C is said to be upper semi-continuous at a point zp € G if corresponding
to € (> 0), there exists a §(> 0) such that

f(2) < f(z0) + ¢ for all z € GN{z: x(z,2) < 6}.

It is observed {Theorem4, [2]} that the limiting oscilation function §(z2) is
the upper semicontinuous at every point of its domain of definition. ‘

Let F be a family of meromorphic functions, all defined on a region G C C.
A point zp in the interior of G is said to be a normal point {p. 182, [1]} of
the family F if there is at least one positive number a < 1 and at least one
neighbourhood U of zy such that x(f(z), f(20)) < a for all z € U and for all
f(2) €F . The collection S of all normal points of F is called the normal kernel .
of F {p. 182, [1]}. When S = G, we say that the family F is normal in G
{p. 182, [1]}.

In this paper we introduce the notion of weak continuous convergence of a
sequence of functions at a point and show that there are sequences which are
weakly continuously convergent at a point but are not continupusly convergent
there at zp. We also define the lower limiting oscillation of a sequence of func-
tions at a point and establish a relation with the weak continuous convergence.
Also we deal with the concept of weak™ normality of a family of meromorphic
functions at a point and we prove that this idea ultimately coincides with that
of normality of the family. :

Unless otherwise stated, sets are always subsets of C, functions (generally
complex valued) are defined on subsets of C' and the distance between two

points in C means their chordal distance.

2. Weak Continuous Convergence

We introduce the following definition.

Definition 1. A sequence {f.(2)} of functions is said to be weakly con-
tinuously convergent at a point zg of the closure of the common domain of
definitions of f,(z), » = 1,2,... if and only if at least one subsequence of
{fn(2)} is continuously convergent at 2. .
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Clearly a sequence which is continuously convergent at zo is weakly con-
tinuously convergent at zp, but the following example shows that the converse
is not true.

Example 1. Let {f,(z)} be defined in 0 < |z| < 1 as follows:

1 . .
f(z)—{ﬁ if n is odd,
(2) =
z" - if n is even.
The sequence {fn(z)} is not continuously convergent at z = 0, but it

is weakly continuously convergent at z = 0, because the sequence {f,(z)
n is even} is continuously convergent at z = 0.

3. Lower Limiting Oscillation and Weakly Normal Sequence

Definition 2. Let zp be a point of accumulation of the common domain
of definition (a dense-in-itself set) of the sequence of functions {f,(z)} . Let

Ci. be the circular discs defined by relation x(z,20) < 5 k=1,2,3,... and

let S,x be the chordal oscillation of the function f,(2) on AN Cy i.e., Spx =
sup{x(fn(2"), fa(z")) : 2,2 € ANCy}. Let §, = liminf,, oo Snk, k =
1,2,3,.... Since we have C(x41) C Ck, it follows that for every n S;(x41) < Snk
and so §; > §, > d3... holds. Hence the limit §(29) = limg_, o d;, exists, and we
shall call it the lower limiting oscillation of the sequence of functions {f,(z)} at
the point zq.

Remark 1. Since the chordal distance of any two points does not exceed
1, it follows from the definitions that 0 < §(z0) < 6(20) < 1.

An immediate consequence of Definition 2 is the following theorem.

Theorem 1. Let {fn(2)} be a sequence of functions each defined in a
region G. Then §(z) is upper semi-continuous at every point of the closure of

G.

Proof. We shall show that if € is an arbitrary positive number, then a neigh-
bourhood of a point zy in the closure of G ezists such that §(z) < 6(20) + € for
each point z in the common part of this neighbourhood and G.

If possible, suppose that this is not true. Then in every neighbourhood of

zo there ezists points 2’ € G such that §(2') > 8(z0)+¢€. Let Ny : x(z,20) < 5
where k is a positive. integer, be any neighbourhood of zy. Let the positive
integer k' be so chosen that Ny : x(z,2') < o is contained in N,. Since

8(2") > 8(=20) + €, from the definition of §(z) it follows that

8 = liminf Spp =liminf  sup  x(fa(21), fu(22))
n—oo n— 21,22EN2NG

>8(2") > 8(20) + ¢,
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which gives
sup X(fa(21), fn(22)) 2 8(z0) +€/2
z ,ZQENQnG

for all sufficiently large values of n. Since in each neighbourhood( of zg9, we can
always choose neighbourhood like N2, this contradicts the definition of §(zo).
This proves the theorem. -

The next theorem gives a relation between the lower limitimg oscillation of
a sequence of functions at a point and the weak continuous convergence of the
sequence at that point.

Theorem 2. If §(20) > 0, then {fn.(z)} is not weakly continuously con-
vergent at zp.

Proof. From the definition of §(z) it follows that

0<é(ﬁ)-<6k<Qk=1iminf5,,,c for k=1,2,3,...

g — 2 n—oo
which gives

8(20) < S

2 fo'rnZNk‘, say, and k£ =1,2,3,...

i.e.
é
____(Zo) < sup X(fn(z,)’ fn(z”)) for n > Nj and k=1,2,...
2 z',z"€CrNA

So there exist points 2}, zl/, € Cx N A such that

nk’“n
§(z0) 4 7)) for n > Ni and k = 1,2,3,.
=5 < X(Ja(znk, fa(2nx)) for n 2 Ni and k = 1,2,3, ...
Let {f.,(2)} be any subsequence of { f,(z)} . Then there exists a sequence
of positive integers {px} such that {fn,+p.(2)} is a subsequence of {f,,(2)}.
Since for £k =1,2,3,... 22N~+p.,),k’ z(lN.+p.),k € Cr N A, it follows that

]

. ’ — 13 " _
dim 2tk = B0 Z(Nukp) ke = F0-

We shall show that the sequences

{ka""Pk (sz,,+pp.),k)} and
fN 2! , if converge, converge to two different limits. Let
k+Pr (N 4p0) ke

klivrgo le+pk(z(N.+pk))k) = a and klilr;o ka+Ph(22’1Vp,+pg),k) = p.

é(=0)
4

Then for given ¢, 0 < € < , there exists a positive integer kg such that

X(kao+Pno(zéN.,o-ﬁ-pko),ko)’a) <€ and X(kao'H’ko(z(l\ho+pko),ko)’ ﬂ) <e.
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Then
6(=2
(20) < X(fN*o+P"u( (Nko+m=.,)ka) fN*o+P*o( (Nixg+Pro )s ko))
< X(kao'FP"o( (Nk°+p|.°),ko)’a) + X(as ﬂ) +
+ X(kao+Pko(zz'N,‘o-l—p.,o),ku)’ :B)
< x(a,B) + 2,
ie., x(a,B8) > —=— (zo) —2¢ > 0, which implies that a@ # . Therefore, the sequence

{fNey 401, (2)} 18 not continuously convergent at zp, and by our remark made
in the introduction the sequence {fy, (z)} is not continuously convergent at Zo.
Since this is true for every subsequence of { f,(2)} , it follows that the sequence
{f~(z)} is not weakly continuously convergent at zp. This proves the theorem.
=]

For a sequence of meromorphic functions we observe in the next theorem
that the lower limiting oscillation has only two restricted values.

. Theorem 3. In the interior of their common domain G of definition, the
lower limiting oscillation of any sequence { fn(2)} of meromorphic functions can
assume only the values zero and unity.

Proof. Let 2o be a point of G at which the lower limiting oscillation §(20) < 1.
Let o be a positive number such that §(zp) < a < 1. Since §(20) = limg—00 Oy
and {§,} is nonincreasing it follows that there is a neighbourhood C} of 2o such
that §; < a. Since §; = liminf, .o Snk, we have Sy, < @ in Cx N G for
j =1,2,3,.... Therefore for all points in Cx NG, we obtain x(fr;(2), fa;(20)) <

a, j=1,2,3,...
We set
fﬂj(z) - fﬂ,'(zO) ofe
N R AT T R A
gﬂj(z) = 1 )
m , if fnj(Zo) =0

These functions gn;(2) are meromorphic in Cx N G and

\/#I—_%P = X(9n;(2),0) = X(fn;(2); fn;(20)) < e,

which implies SR
n:(2)| < —m===M

say, for j = 1,2,3,... Thus we see that all the functions g,,(z) are regular

and. uniformly bounded in Cx N G, and they all vanish at zp . Let p be a
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. 1
positive integer. Applying Shwartz’s lemma to the functions —g,,(z), we see
that there exists on the Riemann sphere a circular disc C, with centre at zg in

which |g,,(2)| < % holds for j = 1,2,3,.... At all the points of C, and for
Jj=123,... we have

— Igﬂj(z)l z _1_
X(fn,-(z)’ fnj(zo)) = m—m Igﬂ;( )< P

2
so that S,;, < 2 Therefore, it follows that §(z) < §, < ; , and since p is

arbitrary, 8(20) = 0. This proves the theorem. .

Note 1. It is known {p. 181,[1]} that for a sequence of meromorphic
functions the limiting oscillation at a point is either zero or unity. Certain
connections between the limiting oscillation and the lower limiting oscillation

will be shown in the latter part of the paper.

Definition 3. Let A be the common domain of the definition of the
function of a sequence {f,(z)} . We say that the sequence is weakly normal
at the point 2o of the closure of A if and only if §(z9) = 0. The set S of all
points at which {f.(z)} is weakly normal is called the weak normal kernel of

the sequence of functions.
Since 0 < §(20) < 6(20) at a point zo of the closure of A, it is clear that
a sequence of functlons, which is normal at a given point, is weakly normal at

‘the same pomt
Keeping in view some steps of proofs of Theorem 3, the fo]lowmg theorem

on weakly normal sequence may be proved.

Theorem 4. A sequence {fn(2)} of functions meromorphic in a region G
is weakly normal at an interior point zo of G if and only if there ezxists at least
one neighbourhood U .of zg and at least one positive number a < 1 such that for
all points z of U and for a subsequence {fn;(2)}s x(fn;(2), fn;(20)) < a holds.

In this case, we can assign to the arbitrary e (> 0) a neighbourhood U, of
zg such that for all points z of U., we have x(fn,;(2), fn;(20)) < &, 3 =1,2,3,.
The set of those points of G at which the sequence {f.(z)} is weakly normal is
then an open subset of G, unless it is empty.

Note 2. Using Theorem 1 we give in the following an aJternatlve proof of

the last statement of Theorem 4.
Let {fn(2z)} be weakly normal at zp € G i.e., §(20) = 0. Since §(2) is
upper semi-continuous at zp ,there exists a neighbourhood U of zy such that

4(z) < 8(20) + % for all z € U. Since §(z0) = 0, it follows from Theorem 3 that

8(z) =0 for all z € U. Hence {fn(2)} is weakly normal at each point of U.
Next theorem gives a sufficient condition for a sequence of meromorphic
functions to be weakly continuously convergent at a point of their common

domain of definition.
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. Theorem 5. Let {fn(2)} be @ sequence of meromorphic functions and let
G be their common domain of definition. If §(z9) = 0 for some z9 € G, then
{fn(2)} converges weakly continuously at zo .

Proof. Since §(z0) = 0, by Theorem 4 there exist a positive number a < 1
and a neighbourhood U of zp and a subsequence {f;(2)} of {fu(2)} such
that x(fn,;(2), fa,(20)) < a for all z € U. By 181.7 {p. 181, [1]} we see
that the limiting oscillation of the subsequence {f,;(z)} is zero at zo , and
by § 179{p. 178, [1]} we can choose a subsequence of {f,,;(z)} which is continu-
ously convergent at zg . Therefore, the sequence {f,(z)} is weakly continuously
convergent at zo . This proves.the theorem. .
Combining Theorem 2 and 5 we can state the following theorem.

Theorem 6. A necessary and sufficient condition for a sequence { f,(2)} f
meromorphic functions to be weakly continuously convergent at a pomt zo of
their common domain of definition is §(z0) = 0.

4. Weak* Normal Family

Definition 4. A family F of meromorphic functions is said to be weak*
normal at an interior point 29 of the common domain of definition G of the
functions if for every infinite subfamily 7 of F there exist

(i) a denumerable subfamily N of 7,

(ii) at least one positive number ay (dependmg on the family N ) such that
any <1,

(lu) at least one neighbourhood Uy of zp (Un depends on the family N)
such that x(f(2), f(z0)) < an for all z € N and for all f(z) € N.

We shall show that the above family is identical with the normal family.
Before proving this, we will obtain a connection between weak* normality and
weak continuous convergence.’

Theorem 7. A family F of meromorphic functtons is weak® normal at
zo if and only if every sequence of Junctions from F is weakly continuously
convergent at zg .

Proof. First we suppose that the family .7-' is weak™ normal at zp . Let
{fn(2)} be a sequence from F . Then, by definition, there is a subsequence-
{fn;(2)} of {fu(2)}, a positive number a < 1, a neighbourhood U of 24 such

that
X(fn,(2); fn,(20)) < @ for all z € U.

By 181.7 {p.181, [1]} the subsequence {fy;(z)} is normal at 2, , and by §179
{p.178, [1]} we can select from {f,, (z)} a subsequence which is continuously
convergent at 29 . Therefore, { f,,(z)} is weakly continuously convergent at zg .
Next we suppose that every sequence of functions from F is. weakly con-
tinuously convergent at zp . If possible, suppose that the family F is not weak*
normal at zg . Then there exists an infinite subfamily 7 of F such that for
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ay =1-— l(n = 2,3,...) and for every neighbourhood C} : x(z, 20) < % (k =
n c
1,2,... ), the chordal oscillation of the functions f(z) € 7, exept possibly a

. . . 1

finite number of functions (for each a,), is not less then 1 — —. So we can
n

choose a sequence {f,(2)} of functions from 7 such that the chordal oscillation

1
of fo(z)on Cr(k =1,2,...) is not less then 1— o Therefore, for this sequence

6(z0) = 1 and so by Theorem 2 it is not weakly continuously convergent at zg ,
which is a contradiction. This proves the theorem. ) .
We now require the following known theorem {p. 183, [1]}.

Theorem 8. A family F of meromorphic functions is normal in a region
G if and only if from every sequence fi(z), f2(z), fa(z),... of functions of the
family, at least one subsequence fi,(2), fr,(2), frs(2),... can be selected that
converges continuously at every point of G.

Combining Theorem 7 and 8 we get the following theorem.

Theorem 9. A family F of meromorphic functions is normal at zo in the
interior of their common domain of definition G if and only if the family is
weak* normal at zg .

Remark 2. From Theorem 9 we see that the notion of weak* normality is
identical with the notion of normality of a family of meromorphic functions. So
Definition 4 can be treated as an alternative definition of normality at a point
of a family of meromorphic functions, although the suppositions in Definition
4 are clearly weaker than the corresponding suppositions in the definition of
normality of a family of meromorphic functions {p. 182, [1]}.

It is clear that 0 < §(z0) < 8(20) and so if 6(z9) = 0 then §(20) = 0. In the
next theorem we prove the converse under certain additional supposition.

Theorem 10. If the lower limiting oscillation of every subsequence of a
sequence {fn(2)} of meromorphic functions is zero at a point zy belonging to
the closure of their common domain of definition, then the limiting oscillation
of the sequence { fn(z)} is also zero at zp .

Proof. By Theorem 4 the family {f.(z)} is weak* normal at 2z, . So by
Theorem 9 the family {f.(z)} is normal at 2y , and by 181.7 {p. 181, [1]}
the limiting oscillation of the sequence {f,(2)} is zero at zp . This proves the
theorem. - s

Note 3. If a sequence is normal at 2z , then clearly every subsequence of
it is normal at zg and so every subsequence of it is weakly normal at z5 . We
can, therefore, restate Theorem 10 as follows: :

A sequence {fn(z)} of meromorphic functions is normal at a point zy if
and only if every subsequence of it is weakly normal at zg .

Since for a sequence {f,(z)} of functions we get 0. < §(z0) < 8(20) < 1, .
it follows that §(zp) = 1 implies §(20) = 1. However for the converse part we
prove the following theorem.



Normal Families of Meromorphic Functions _ 81

Theorem 11. If the limiting oscillation of every subsequence of a sequence
{fa(2)} of meromorphic functions is unity at a point zo belonging to the closure
of their common domain of definition, then the lower limiting oscillation of the
sequence { fn(z)} is also unity at zo .

Proof. From the given condition it follows, in view of 181.7 {p. 181, [1]} that
no subfamily of {f,(z)} is normal at z, . So by Theorem 8 no subsequence of
{fn(2)} is weakly continuously convergent at zp , and in view of Theorem 6, the
lower limiting oscillation of the sequence {f,(z)} is positive at zp . Since the
functions f,(z) are meromorphic, by Theorem 3 the lower limiting oscillation
of {fn(z)} is unity at zo . This proves the theorem. ‘m
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