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This work is closely related to [6]. We prove decomposition theorem for the solutions of
the differential inclusion
r€ F(t,r), (o) = zo

using the solutions of the parameterized system of differential equations
r=u(l,z), z(to) = zo.

where u(t,r) € F(t,1) is a measurable selection or measurable feedback control. This paper
is related to the investigations of I. Ekeland and M. Valadier [2], A. La Donne and M.
V.Marchi[7), A. A. Tolstonogov [9]. A. Ornellas [8], where the decomposition of the
differential inclusions uses functions which depend on (, r,u) (u is an additional variable).

Statement of the Problem

Let [t,,T] x D C R x R™ be a closed domain , where R is the real line
and R" is the Euclidean space. For (t,z) € [t,,T] x D we are going to consider
the following differential inclusion:

(1) € F(t,x), z(1,) = z,,

where z € R", (t,z) € [t,.T] x R™. Suppose F(t,z) is a jointly measurable
multi-function in (¢,z) with compact values.

A solution of the differential inclusion (1) is said to be any absolutely
continuous function z(t) which for almost all t satisfies the differential inclusion
(1), i.e.

€ F(t,z(t)) and z(t,) = zo.

Definition 1. ([5]) The point = belongs to the essential limit of the func-
tion u(y) when y — z (denote z € esslim u(y), if for any set N C R" with
T—y

Lebesgue’s measure equal to zero there exists a sequence y; € N (i = 1,2,...,
for which

lim ye = r and lim u(yx) = z.

k—oco k— o0
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Let us denote

(2) U(t,z) = {z € R"|z = esslim u(t, )},

for any single-valued and measurable function u(t,z).

The multifunction U(t,z) is a jointly measurable function in (t,z). It is
also upper semicontinuous with respect to z and the supperposition U(t z(t))
is a measurable function for every continuous function z(t) (see [5]). '

For every measurable selection u(t,z) € F(t,z) (f.e. see [4] forits existence)
we consider the differential equation

& = u(t,z), z(t,) = z,
which is equivalent to the following differential inclusion:
(3) z €col(t,z), z(t,) = z,,

where U(t,z) is defined by (2) (see [4],[5]).

We denote by H and G the set of solutions of the differential inclusions
(1) and (3) respectively. We are going to consider the problem when the sets
H and G coincide. This is the problem of the feedback control decomposhiém
of the solutions of the differential inclusion (1). We notice that the family of
functions of two variables (¢,z) is as narrow as the family of functions which
depend on three variables (¢, z,u). '

Obviously, we have H D G if F(t,z) is an upper semicontinuous function
in z with compact values. :

Treatments of the decomposition problem for the differential inclusions
different from the above mentioned approach are presented f.e. in [8], [9].

Definition 2. The upper semicontinuous multifunction F(z) is said to be
a Kuratowski function if

F(z) = ess Lim éup F(y),
y—z

where Lim sup is a Kuratowski upper limit (for more details see [1]) and ess is
an essential limit (see definition 1).

Main Result

We are going to show that under some specific conditions imposed on the
multifunction F(¢,z) (it may be nonconvex) the solutions of the differential
inclusion (1) indeed decompose.
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Theorem. Let F(t,z) be a jointly measurable and a Kuratowski multifunc-
tion in x with compact values. Then, for every solution y(t) of the differential
inclusion (1), there erists a measurable selection u(t,z) € F(t,z) for which

y(t) € U(t,y(1)), y(t,) = z,,

where
U(t,z) = {z € R¥|z = esslim u(t,y)}-

Proof. Let y(t) be the solution of the differential inclusion (1), ¥(t) €
F(ta y(t)) and y(to) = Z,.

It is well known, that the conditions of the theorem don’t guarantee the
existence of solution of the inclusion (1).

We construct a measurable selection u(t,z) € F(t,z) as:

t, - y(t = i - y(t .
I u(t,z) — y(t) || ...:.";-125‘,,)"“ ()|l

Now, we have

u(t,z) € Prp)y(t) = Argmin || u — §(t) || .
u€F(t.r)

The functions F(t,z) and j(?) are measurable, hence we can apply the Luzin
theorem (see f.e. [1], [4]). Thus:

1. There exist compact subsets D, C D and T, C [t,,T] for which the
Lebesgue’s measures u(D,) and u(T,) satisfy the following inequalities:

(D) > w(D)—€ p(T)2T —t, — ¢,

where € is an arbitrarily chosen positive number.

2. The restriction of the multifunction F(¢,z) on the set T, x D, is a
continuous multifunction and the restriction of the function y(¢) on the set T,
is a continuous function.

It is easy to check that

Argmin || u = §(0) |
u€F(t.x)

is an upper semicontinuous multifunction with closed values if the function
F(t,z) and j(t) are continuous. Hence

Arg min || u - §(t) ||
u€F(t.r)

is an upper semicontinuous multifunction on the set T, x D, with closed values.
Recaling that the positive number ¢ was chosen arbitrarily, the multifunction
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Ar%(mir; || w—#(t) ]| is a jointly in (¢,z) measurable function and there exists
ueF(t,xr
a measurable selection

u(t,z) € Argmin || u — y(2) ||
u€F(t,xr)

For more details one can see [1], [3] and [4].
We have to show that y(t) satisfies the following differential inclusion

y(t) € coU(t,y(1)), y(to) = z,,
where U(t,z) is defined by (2). For a.e. t € [t,,T] we have that j(t) belongs
to F(t,y(t)). As well as F(t,r) is a Kuratowski function w.r. to z, for every
set N with Lebesgue measure u(/N) = 0 there exists a sequence z,(t) € N, k
= 1,2,..., kli_.n;o zi(t) = y(t) and its respective sequence yi(t) € F(t,zi(t)),. k =
1,2,... for which

kliy:o yk(t) = y(t) € F(t,y(2)).

Under the following inclusion
u(t,zk(t)) € Argmin | u—y(¢t) ||

w€F(t,ra(t))
we obtain

gg;HMLHUH—Mnﬂsgﬂﬂyun—muu=&
Q.E.D.

Note. The requirement F(t,z) to be a Kuratowski function w.r. to z is
important as it shows the following example:
Let us define the following multifunction:

{-11}, ifz=t,
G(t,z) = -1 , ifz>0,

1 , ifz<0.

This function is not a Kuratowski function because the value +1 € G(y,y)
cannot be obtained as a Kuratowski essential upper limit. The differential

inclusion
&€ G(t,z), 2(0)=0
has an unique solution z(f) = t which cannot be obtained as a solution of the
differential inclusion (3). It easy to check that
-1, ifz>0
J = -
uit,z) { +1, ifz<o,

and the differential inclusion z € G(t,z), z(0) = 0, has no solutions.
Remark. The relaxed differential inclusion
z€colU(t,X), z(t,) =z,
always has a solution [4]. Under the proved theorem we should offer the follow-
ing definition for the solutions of differential inclusions with a right-hand side
as a Kuratowski function:
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Definition 3. Let F(t,z) be a Kuratowski function. A solution of the
following differential inclusion

z € F(t,z), z(t,) = z,

is said to be any absolutely continuous function z(t) which satisfies almost
everywhere the differential inclusion

r€col(t,z), z(t,) = zo,

where
U(t,z) = {z € R"|z = esslim u(t, y)},
y—z

and u(t,z) € F(t,z) are all measurable selections.
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