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Group Theoretic Study of Certain
Generating Functions Involving
Modified Laguerre Polynomials

A K. Chongdart, N. K. Majumdar:t

Presented by P. Kenderov

In this paper we derive some new generating functions of modified Lainerre polynomials as
defined by Goyal by the application of L. Weisner’s group-theoretic method with the suitable
interpretatioin of the parameter m.

1. Introduction

The modified Laguerre polynomials [1] defined by

b*(m),
n!

(l) Lapmn(z) = 1Fy(—n;m; a't/b)

satisfies the following ordinary differential equation [2]:

(2) zD?u 4 (m — ax/b)D,u + %nu: 0.

The aim of the presented paper is to derive certain generating functions of
the said polynomials by L. Weiner’s [3] group theoretic method (which does
not seem to have appeared in the earlier works). For previous works on the
polynomials under consideration we may mention the works [3-5].

2. Group-theoretic method

Replacing 3“; by 3@;, m by y% and u by v(z,y) in (2) we get the partial
differential equation:

d%v %v a Ov a
— 4+ —nv = 0.

3 ———— nim—— —
i) o2 Y V50, " 5%z %
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Thus v(z,y) = Lapmna(z)y™ is a solution of (3) since L, pma(z) is a
solution of (2). We now define the following linear partial differential operators:

9
Ar=y oy
b 0
4 g = — Y — —
(4) A a yé).t y
a
Az=zy™' — + — -1
3 Ty 8 + 0." Yy
such that
Al[Lu.b.m.n(z)ym] = "‘La.b.m.n(z)ym
(5) A'I[La,b.m.n(z)ym] = —ym+llla.b.m+|,n(1')

A3[Labma(2)y™] = (n+m+ 1)y Lo gy a(z)
The commutator relations satisfied by A; (¢ = 1.2,3) are
(6) [AI'AZ] = A,, [A],A3] = —Aj, [AQ' A;,] = I

So from the above commutator relations we arrive at the following theorem:

Theorem. The set of operalors {LA(Gi= 1,2,3)}, where | stands for the
identity operator, generates a Lie-algebra L.

It can be easily shown that the partial differential operator:

82 82 a 0 a
L=25a1* Y90y " 570z * 3"
which can be expressed as follows:
b
(M “L=A43+ A1 -n-1

commutes with each A; (i = 1,2,3),i.e.

(8) [baL, A;] = 0.
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The extended form of the groups generated by A; (i = 1,2,3) are as follows:

4 flz, g)y= fiz.e"y)
azA; —_ p—a2y b
(9) e f(r,y)=e " f(z + SV Y)

e f(z,y) = (1+ 5’y‘—’)“f(zu + "—;),y + a3).

Thus we get
ea;A,eaaA,Ca.A. f(l' y) -

10
L9 =(l+a—;)' eI+ s+ 2 )(z+9azy) e"y(1+—))

3. Generating function
Fromn (3) we see that v(z,y) = Lapm.n(Z)y™ is a solution of the system:

Lv=0

(1)
and (A; —m)v =0.

Fromn (8) one can easily verify that

b
SC L Lapmal2y™) = 2 L(S(Lapma(2)y™)) = 0

where
S = ea;A; ea;A: olhA..

Thus the transformation S(Lgsm.n(z)y™) is annihilated by %L.
Putting @y = 0 and writing f(z,y) = Lasm.n(z)y™ in (10) we get

€®343e2243(L g 4 om.n(s)y™)

(12) a3 . _, a3y ay b a3 . \m

=(1+ —)7" exp(—azay(l + —)) Las.m.n{(1 + =)=+ —a2y)} {v(1 + =)}
v v v a 1

But
n,A_, a,A,( L

_ymz

ab,m "(x)ym)

_A 14
) (l -m-n — L), z ( azy) Ln,b.m+k-;».n(1').
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Equating (13) and (14) we get
b
exp(—azy(1 + —)) Lapmn{(1+ —)(2:+ —agy)} (1 4 2ym-
y

Z (1=-m-n-k), Z = azy) Lapmtk—pn(z).

p=0 k=0

(_..a)r

Case [: Putting a3 = 0 and then replacing —azy by ¢ in (14) we get

tk
(13) € Lapmn(z — —l) - E ] Lapm+kn(z).
k=0

Case II: Putting a2 = 0 and then replacing —a3/y by ¢ in (15) we get
O 4k

(1 =) Lopmn{z(l =1)} = 2 %—,(l —m=n) Lapm-in(z).
k=0

Case IlI: Taking aza3 # 0, without any loss of generality we can choose
—ayy = t; and —a3/y = t; in (14) and we get

e 1=1) L 4 mn{(1 = t2)(z - 2tl} (1 =¢)m?

D V. T

k=0

(14)

4. Variants of the result (15)

It is evident from the commutator relation [A2, A3] = 1 that the operators
Ay, Az are non-commutative and as such

ea;A; C’a“A’ # €°’A1+G°A’.

So the relation (14) will change, if their orders be interchanged which is done
in this section. In fact, by interchanging the order of operators we get

ea,A; ea"“’[Lu.b."l‘"(z )ym}

15) b o
( = e~V La.b.m.n{r + ;ﬂzy)(l + 7’,)} y"' (l + %)'"-l

But
(_u-,A; Ca’A’[llu b,m u("'t)ym]

_J.P
a8 _ s 3 ,,,_n),,z‘ BW) 1 pmskopin(2).

p=0 k=0




Group Theoretic Study of Certain Generating Functions... 147
Thus by equating (16) and (17) we get

¢ Ln b,m u{I + 'llaZy)(l + —)} (l + )m-—
(17) (..._.1)?
-3

p=0

(1-m—n), Z (’““’) 2 Lo bamik-pnl(2)-

References

[l A. K. Goy al. Vijnana Parishad Anusandhan Patrika, 26, 1983, 263 266.
2] P.N.Shrivastava, S.S. Dhilon. Lie operator and clasucal orthogonal polynomials
- I, Pure Math. Manuscript, 7, 1988, 129-136.
(3] L Weisner. Group-theoretic origin of certain generating functions, Pacific J. Math.,
5, 1955, 1033-1039.
[4) R. Sharma, A. K. Chongdar. An extension of bilateral generating functions of
modlﬁed Laguerre polynomials, Proc. Indian Acad. Sci. (Math. Sci.), 101 (1), 1991,

(5) S l\ ‘Pan. On bilateral generating functions of modified Laguerre polynomials, com-
municated.

t Department of Mathematics, Received 05.05.1992
Ban abast Evcnmg College,
ﬁ K. Chakraborty Sarani,
Calrulla - 700 009,
INDIA

: Dcpartmcnt of Mathematics,
Bagmn ‘ollege,
Bagnan,
Dist. Howrah, W. B.
INDIA .



