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and Lyapunov Vector Function ‘

I. Russinov
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We use in this paper generalized space which pf.:rmit to introduce definition of generalized
stability of integral manifold. Theorems are proved referring to various characteristics of
integral manifolSS using generalized norms

The second method of Lyapunov for stability of integral manifold of dif-
ferential equations using Lyapunov vector functions and comparision method
is well known I.Russinov [1], LMuhametzianov [2]. For Dynamical
systems with large dimension F.N.Bailey [3], R. W.Mitchel, D.A.Pace
[4] the problem for construction of Lyapunov vector function and development
of quality theory of ordinary differential equations is small effectiveness. One
of the reasons for this situaiton that definitions of stability given by means of
ordinary norm are insufficient flexible.

Definition 1. [4] A generalised norm from IR" to IR* is the operator
Il llc : R™ — R*.denoted with ||z||c = (1(z),...,0k(z)) such that '
[ a)] |llz|]lg = O (i.e. 6i(z) > 0 for ¢ = 1,k)
[ B)] llzlle = 0 if and only if z = 0 .
[ O] IXzlle = [Alllelic (i-e. 8:(Az) = |A6i(=) for i = T,k)
[ )] llz + vlle < lzlla + lulls (e 6z +v) < Bi(z) + 6:(v))
We consider the space E® = (R",|| - ||g) with generalized norm ||z||c =

(lyll% + 11211E)? as llyllc = (61(¥)s - - -, 8:(¥))s lIzllc = (Br41(2), .-, k(2)) are
generalized norms and

lyllg : R™ — R, ||zl : R? — le",’ T = (yl,...,ym,zl,...,zp)T
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We shall consider the diferential system
(1) T = X(t,x)’ IL‘(to) =Zo
where X € C[R4 x S(H)x RP,R"], X = (Y',...,Y™, Z',...,27)" as

R, =[0,+00), S(H)={ye€ E™/|yllc < H},

2 J—
2 HeR,, 0< H; < +oo, forT=1,r

Here E™ = (R™, ||y|lc) and EP = (IR?,||z||g) are generalized sub-space of E™.

We suppose the solutions of the system (1) are z - prolongable (i.e. every
solution z(t) is defined for each t € R, for which ||y|lc < H. This condition
means that none of the coordinates z7(j = 1, p) on finite time interval tends
infinity. '

We denote by z = z(t;to,z0) the solution of the system (1) with initial
values z(t;to, Zo) = Zo-

We write the system (1) in the form

(3) | §=Y(ty,2)
(4) . ‘ z=2Z(t,y,2)

as Y(,0,z) =-0. Then the system (3)-(4) and consequently the system (1)
possess p dimensional integral manifold y = 0 [2]. We investigate the stability
of this manifold. For that purpose we use the following definition

Definition 2. The integral manifold is said. to be with respect to the
‘system (3)—(4) : ‘

[ M1)] stable if for each vector £ € R}, and for each to € IR there exists
vector function é(to,&) € R] which is continious in o for each vector £
such that ||yolle < 6, 0 < (||zllg); < +o0 (4 = 1,p), Zo = (Yo, 20) implies
[ly(t; to, zo)|lg < € for each t > to.

[ M2)] equi-asymptotically stable if it is stable and for each vector £eR]
and for each to € IR exist 6o = do(to), 6o € R} and T = T(to, &) such
that [[yolla < 60> 0 < (I12ll6); (G = T,p), implies [[y(t; to, zo)llG < £
We consider vector functions V(t,y) ='(V1(t,y), ..., V3(t,y)) defined and

continious in the region ‘

Ty = {(t,y) : te R,,|lyllc < H}}, 0< Hy < H

together with their derivatives with respect to ¢.
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vV = (Vl, ...,V3) as V(¢,0) = 0. For the set of these functions we deduce

RS

VIl = VY +... V%], s<n.

the norm

We also consider the functions f(¢,V,y),..., f*(¢,V,y) which are defined
and continuous in the region IR, x ©,. The region is determined in following

way
U ={Viy [V +... + V<K, VF 4. 4 |V°| < +oo, |lylle < HEY
besider |
K =sup[|[VY+...+|V!| : (t,y) € Ty) < K1 < +00 or K; = 400
We use the comparison system
(5) w= f(t,u,n(t)), v € R%, ne€ R™

when u = (vl,...,v',wl,...,w’_')T, f = (F'l,...,F',Gl,...,G"’)T, [lv]| =
' Z 1/2

i+ o, el = ]+l = et + ] = ()l + (lw]]?)
We suppose that f(¢,0,0) = 0 and the solutions of the system (5) are

w-prolongable.
We write the system (5) in the form

(6) b = F(t,v,w)
(7 w = G(t,v,w)

and let the condition F(t,0,w,7n(t)) = 0 holds as ¢t > 0 which shows that
system (6)-(7) possesses (s + 1 — l)-dimensional right integral v = 0, (¢ > 0)
in the extended phase space. If in IR° we deduce partial consequence setting
for uy,ue € R®: uy S up <= uj < ul,...,uj < u. Then one can use the

vectoral inequalities
(8) V < f(tV(),¥(1), V € RY, y(t) € R™

of Chapligin’s type.
We use the definitions for quasimonotone nondéecreasing function f(¢,V,y)
and for maximal (minimal) solution u(t; ¢, zo) (u(?;t0,Z0)) of system (5) from

[1].
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Let us the function ¢(A) (A € IRY) is given which is defined , continu-
ous and nondecreasing on the interval [0, H}], (H} < H) in addition ¢(0) =
0, p(H}) < K. Obviousle for the positive definite function W(6,(y),...,0-(y)),
(W(0,...,0) =0, W(01(y),.--,6-(¥)) < K as ||yllc < Hy) the functions

‘1(A) = inf[W(01(y), -, 0,(v)) : A < llyllc < HE]
©2(A) = sup[W(61(y),..-,0:(3)) : llyllc < A]

possesses the same properties (since W(61(y),...,6-(y)) is uniformly continu-
ous). . ' :
We introduce

Definition 3. The right integral manifold v = 0 (¢t > 0) is said to be with
respect to the system (6)-(7) :

[ M1*)] quasi-stable at function ¢(A) if for each vector A € R, (A <
H?) and to € IR, there exist functions a(to, A) € IR} and a(to,A) €
R, (@ <mina,, 7= 1,7, a < A, & < p(A)) such that for each continous-
ly differentiable function 7(t) in R for which ||n(%0)|lc < o« each solution
(v(t), w(t)) of system (6)-(7) with initial conditions ||v(to)|| < &, [|w(to)ll <
+00 is defined and satisfy the inequality ||v(t)|| < ¢(A) on arbitrary time
interval [to,t*] of which ||n(t)|l¢ < A.

[ M2*)] equi-asymptotically quasi-stable at function gp(A) if it is quasi-
stable in this function ¢(A) and each vector A € IRY, for each B €
R, (A< H, B<mind,, 7 =1,7, B < p(A)) and for each to € R,
there exist vectors ‘a(tp,A) € R] and &(t0,4) € Ry (a < A, & <
mine,, 7 = 1,7 & < p(A)) and as well as for each continously differ-
entiable function 7(t) for which ||9(to)llc < a, ||7(to)llc < Aast € R,
and for each solution (¥ (t), W(t)) of system (6)-(7) with initial conditions
lv(to)|l € &, ||w(to)l| < +oo exists T > 0 such that (V(t), W(t)) is defined
for t € [to,+00] and the inequalities ||v(t)|] < ¢(A) for t' > 2o ||v(2)|| <
B for t > t0+Thold

Theorem 1. Assume that there ezists vector functwn V(t,y) satisfying in
" the regzon Fo the following conditions: :

1) E Viit,y)| > W(b1(y),---,0.(y)), where W is positive definite func-
ti=1. ’ " .
tion;

YV < f(t.Viy)
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3) The function f(t:V,y) is quasimonotone nondecreasing
4) llvlle = (61(y);-.-,0-(y)) is generalized norm and lylle : R™ — IR™

5) The right integral manifold v = 0, (t > 0) of the system (6)-(7) is
quasi-stable (respectively equi-asymptotically quasi stable) at function @(A) =
inf[W(61(y),..-,0:-(y)) : A < |lylle < Hy) with the initial values up =
V(to, %0), (t0,%0) € T | - :

Then the manifold y = 0 of the system (3)-(4) is stable (respectively equi-
asymptotically stable).

Proof. Let the conditions 1)-5) of the theorem are hold and given vector
A€, (A< H}). From 1) and 5) it follows

0 < @(A)=inf[W(61(y),---,6-(¥)) : A<|lyllc < H) <K

therefore ||y||lg < a ath(Hl(y), ws :,0,(y)) < ¢(A)

For each vector A € IR}, and for each to € IR, there exist functions
a(to, A) € R and &(to,A) € R, (& < mina,, 7 = 1,7, a < A, & < p(A))
such that for each continously differentiable function 7(¢) in IR, for which
In(to)llc £ o each solution u(t;to,uo) of the system (5) with initial conditions
lvo|| < &, ||wo|| < 400 is defined and satisfy the inequality ||v(t; to, uo)|| < @(A)
on arbitrary time interval [to,¢*] on which ||n(t)||¢ < A.

The function |V1(to,y)| +... + |V!(to,y)| possesses infinitesimal superior
limit so that for this & and for ¢, there exists function 0 < B(é&,to) = B(A, 1) <
a, B € R/, which is continuous in ¢, for each A such that

IV (to, yo)l #-- - + [V!(to; y0)| < &, as lvolle <8, 0 < (llzllg); < +o0, 5 =1,p

We. show that for each solution z(t;to, zo) with initial conditions to >
0, llzolle- < B, (llzllg); < +oo, 5 = T,p lly(tito, z0)ll,< A holds as t > to.

If this is not true, then there exist t*,yg, z; (I]yo[lc < B, 0 < (llzslle); <
+00, j = T,p, t* > o) such that [|y(¢*; to,yo,zo)llc = 4, lly(; _to,yS,ZB)IIG <A
ast € [to,t )

Setting 7(t) = y(t to, yo, z§) then

Tnto)lle =Hlssllc <A< a
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and '
In(t)llc < A as t € [to, ")

If we assume u}} = ug(to; o, uy) = V (o, yg) then for this function 8 ||vg|| <
a, ||wgll < +oo,uy = (v§, wg) € T, therefore each solution u(t; to, uy) of the
system (6)-(7) is defined and satisfy the inequality ||v(t;to, v5, wS)|| < ¢(A) as
t € [to,t*]. This implies that the maximal solution %(¢; 2o, ug) in time interval
[to,t* + At) (At > 0 and sufficiently small) satisfy the condition ||7(¢; to, ug)|| <
P(A). '

We consider the function which is continuously differentiable as
V (¢, y(t;to, Y5, 25))- We have from the condition 2) of the theorem

dV (¢, y(t; to, ¥5, 25 . . »
(9) ( y( dto %o 0)) S f(taV(t’y(t;to’yO,ZO))vy(t7y(t;tO,yO,ZO))

as t € [to,t* + At) _
Inequaliti (9) and condition 3) of the theorem permit us to apply the
Wazewski’s theorem. Thus

V(t1 y(t;'to, y(;’ 28)) S ﬁ(t’ tO, va’wa) as t € [to,t* + At)
We have in special case

W ((81(y(t; %0, 45, 25)); - - - B1(y(t: 10, 95, 25))))

i
< Y IV, y(tito, 95, 20))

< 15(%; to, vg, wo)ll < ¥(A)

ast € [to,t*]. Then ||ly(¢;t0,¥3, 25)|lc < A ast € [to, t*] which is a contradiction.
Thus we prove the stability of the integral manifold y = 0 of the system (3) (4).

If the quasi-stability in condition 5) of the theorem is equi-asymptotically
then for each B (B < minA,, 7 = 1,7, B < ¢(A)) and for each solution
z(t; to, To) with initial values |lyollc < B < @, 0 < (J|z0llg); < +o0 (i.e. the
condition ||y(¢;t0,¥s,28)|| < A holds as t € [tg,+00) and for its correspond-
ing function V' (¢, y(t; 0, Yo, 20)) which satisfy the condition |V1(to,y0) + ...+
V{(to,y0)| < & (i.e. for to, up = (vowo), ||voll < &, |lwol| < +00, uo € V(Ty)
) there exist T'(B, A, , to, vo, wo) such that ||v(t; to, vo, wo)|| < B ast > to+ T

Then . .

YOIVt y(tito, o)) < B as t>to+T *

=1
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Consequently
l
Jim, 321V (e, v(titon 20))] = 0
From here and from condition 1) of the theorem we have
Jim (lly(t; to, zo)llc); = 0, 5 =T,m

which shows that the integral manifold y = 0 of the system (3)-(4) is equi-
asymptotically stable. This completes the proof. '

Let the system (3)-(4) possesses (n — m; )-dimensional manifold y; = 0 and
(n — my)-dimensional manifold y2 = 0, my + my = n — p. We state a result
which demonstrates with higher accuracy the idea of the generalized norm. The
proof is direct cotrollary from Theorem 1.

TFheorem 2. Assume that there exists vector-function

V(t’ y) = (Vl(t’ yl)’ [RER) Vll(tv yl)v Vl‘+1(t’ y2)1 ey V'!+12(t’ y2))

which satisfy the folloing properties in the region Tz, :

D lzlle = (61(v1), -+, 0r,(31), Ori41(¥2)s- -, Ory4ra(32), Origrata(2),- -,

0x(2)) '
h = (yl,.“’ym,), Y2 = (ym,+1’.”,ym1+mg)’ z= (zl,_“,zp)’
z = (%1,92,2), llzlle : R* —» R, [lp|lg : R™ — R™,
llv2llc : R™ — R, ||2]|g : RP — RE-(nma);

I 4
2) > Vit y)l = Wa(61(m1), - -, 05, (31)),
=1

[P
DOIVET (R, p)| = Wabr,41(01)s - - Ori 4o (12)),

i=1
where W1 and W, are positive definite functions;

YV < f(t,V,y)

4) The function f(t,V,y) is quasimonotone nondecreasing

5) The right integral manifolds vi = 0 (t > 0) and v = 0 (t > 0) of the
system (6)-(7) are quasi-stable and equi-asymptotically quasi-stable respectively
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at functions
©1(A1) = inf[W1(61(31), - - - 9r, (31)) :
A < |nille £ H,, 7=T1,mq ]

992(A2) = inf[Wz(orl+1(y2), e ,0;“+r2(y2)) :
A; < |lwelle < H,,, ., T=1,m2]

Then the integral manifolds y; = 0 and y2 = 0 of the system (3)-(4) are

quasi-stable end equi-asymptotically quasi-stable respectively.

Example.
gy = (e7t +sint)y() — y(l)y(3)2
73 = (e~ — sin t)y(z) _ y(2)y(3)2
. _ 1 2
(10) g3 = (et = 2)y® — Zy(3)(y(l) + )

. 1 2
y(4) - __3y(4) _ Zy(‘i)(y(l) + y(2))

: _ 1 2
3(1) — -t _ ZZ(l)(y(l) —y®) .

The system (10) possesses the integral manifolds y; = (yW,y?)) = 0 and

y2 = (¥, y*) = 0.
We deduce the generalized norm
ly™)]
lvlle = | 18I
© A\ y/y®? 4 y@?

We choose The Lyapuniov vector function in the form

V(yi,y2) = (VIgM), V2(D), V3@, y@) .

where
Vi)' = yM2, V(@) = y@2, V3@, y@) = y@° 4 57,

Wy =y, 4y W, = V3
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The comparision system is

D) = 29(V) (e~ 4 sin t)
@ = 263 (et —sint)
53) = — 2,3

which possesses right integral manifolds v; = (v1),v(®)) = 0, (¢ > 0) and
vy = v =0 (¢ > 0). At this v; = 0, (¢ > 0) is quasi-stable and v = 0, (¢ > 0)
is equi-asyrhptotically quasi-stable. Theorem 2. implies the integral manifolds
y1 = 0 and y, = 0 of the system (10) possess stability of the same kinds
respectively.

(1]

(2]
(3]
(4]
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