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Introduction
In this paper some generalizations of inequalities for the strongly positive
sequence are given. '
A sequence {u,}52, is said to be strongly positive sequence in the interval
(=00, 00) if for every polynomial with real coefficients
éP(z) =ar+a1z+az2’+...+a,2"

which is nonnegative for all real 2, the inequality

aoio + a1py + ...+ anptn >0

holds.

H.Hamburger gave the following two criteria for the strongly positively
([1], pp 103-107). )

Criterion 1. If the seque;zce {un} ts a strongly positive in the interval
(—o00,00) then there exists an increasing and bounded function g with infinitely
points of discontinuity such that

(1) Pn = / z"dg(z) n=0,1,2,...

—00

Also, if moments ( 1) ezist then p, is the strongly positive sequence.
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Criterion 2. The sequence {u,} is strongly positive in the -interval

(—00,00) iff

Ho M1 .- Hn
7 S T

(2) An(po) = | . . >0, n=0,1,2,...
Hn  Hntl --- Hon

Here we shall give some comments about results from [1].

1. First let prove some useful theorems.

Theorem 1. Let {u,} be a strongly positive sequence and let k; (i =

1,2,...,n) be nonnegative integers. Then
(3) |tkitk; ], 20
(4) ) I(=1)%F% g ykyln > 0

where |a;;|, denotes a determinant of order n with elements a;;.
Proof. Note that (3) is equivalent to

\ (o o)
’ / tktkidg(t)
—o00

> 0.

n
This is the well-known Gram inequality for functions f;(¢) = t*, i = 1,2,...,n.
Proof of (4) is similar. m

Theorem 2. Let i be an even nonnegative integer and let j, k be odd
nonnegative integers. If {un} is a strongly positive sequence then

(5) Hilbivj+k 2 PitjMitk-

Proof. The inequality (5) is equivalent to
oo . g . . S . . oo .
[ ddgy [ eritkagy 2 [ eiagy [ tkagtr
—00 — 00 —00 —00

what is well-known Chebyshev’s inequality for monotone functions f(t) = t/
and g(t) =t-. m '
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Theorem 3. Let iy, i1+ 2+ ...+ 15, P2i2,...,Pnin be even nonnegative
integers, pi, ..., Pn be positive numbers such that 1/py +1/p2+ ...+ 1/p, = 1.
Then

. 1 1/p;
(6) Hiy4.4in < i, g H l"ﬂ/:;?jij'

Proof. The inequality (6) is equivalent to

oo ; oo | 1/py n co .. 1/p;
/ t"+"'+"'dg(t) < (/ tndg(t)) H (/ tu+Pn:’dg(t))
oo —00 . =00

=2

what is consequence of Holders’s inequality. m
Now, the previous three theorems will be applied on some results from [1].

2. In [1] the following two statements .were noted:

Let %)
' A A
<p(z)~Af,’°)+..'.+—;‘—,—z"'+..., k=1,2,...,p

"and

L
H(pk(z) Lo+———z+ +—n—"'-z"+...

If sequences {/\( )}n are strongly positive in the interval (—oo, oo) then ‘the
sequence {L,}, is strongly positive. Also, the inequality
An(Lak) >0 n=0,1,2,... k=0,1,2,...

holds([1], pp 101 thm 4.3.7 and thm 4.3.8).
If we apply inequalities (3) and (4) on the sequence {L,},, we get

Lok,  Lky4ks -+ Ltk
Lk1+k2 L2k2 o wize Lk:+kn
Lk, |, = . . . .
Lk..+k1 o Lgk_'

I (—l)ki+kij.'+k,' n.Z 0

what is an extension of theorem 4.3.8 from [1].
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(5) and (6) become
LiLiyj4k 2 LiyjLivr -

n
Liyotin < (Li)P [](Lispyi) VP
j=2 Y
where indices_satisfy conditions from theorems 1-3.
If we put ¢ = 2k and j = k = 1 then we have
L2kL2k+2 - L%k+1 2 0
what is inequality of Turan’s type.
For example, we can apply inequalities (3), (4), (5) and (6) on the function

oo

1 N, .
fa(2) = (1—ar12)k...(1 — apz)k= — ’E’HZ
where a;, i = 1,...,m are real and k;, ¢ = 1,...,m are positive ([1], pp 106).

The following definition and results are also given in [1]: .
Let {\.}» be the strongly positive sequence in-the interval (—oco0,c0) and
let N N
—\+21 An
p(z) = Ag T +...+ n'z"+... and

P(2)=Ao+Mz+ ...+ 2"+ ...

We say that ¢(z) belongs to the class A and (z) belongs to the class B.
If o(2) € A and ¥(z) € B and z € IR then ¢(z2) € A and ¥(z2z) € B. If
wr(z) € A k=1,2,...,p,¥Yr(2) € B, k=1,2,...,sand if

P (o) oo

L (21, ..., 2p) L
[[o(arz) ~ Y =y 2tozn = 5 0 —0en
k=1 n=0 n=0

n! n!
n=0 n=0

s oo =)

M"(ty,...,t M
I|¢k(tkz)~§: n(l a)zn=§: n ,n
k=1

where z, k= 1,...,pand t,x, k = 1,...,s are real, then

An(LY) > 0and A(MY) >0
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i.e. {L”} and {M/} are strongly positive sequences and we can apply (3), (4),
(5) and (6):

| L%k, |, 20 | (=) ¥B L, | 20

>0

' M”k,+kJ | >0 ’ (_1)k.+k;Muk‘+kj

n

n n n n
L"L" g4k 2 LY ig 5 L7 4k

n
L gpin < (L7 )MP E(L”i,-}-p,ij)l/pj

=2

n " n n
M";M"ipjpk 2 M7 ;M7 ik

n
M";gogin < (M7 )P E(M"ix+p,ij)l/p’
j=2

where 7,j,k,%1,...,%n,P1,-- -, Pn satisfy conditions from theorems 1-3.
Note that Grommer’s function

= Hi
fa(z) = p+ z T auz
1=0 '

where p; >0, >0, a; € R, 5 > 1, belongs to B.
K [a]

If the entire complex function F has the form

(o o)

F(z) = b [[ (1 + :—n) . F(0)>0

n=1

where @ > 0 and b are real constants, a, > 0 and ) 1/a, < oo, then the
sequences {1/F(zn)}, and {1/F(z + n)}, (z > 0), are strongly positive se-
quences in the interval (—oo,00) ([1], pp 108). So, for these sequences the
following inequalities are valid:

[1/F(z + ki + k;)|, >0 ki € No

|1/ F(z(ki 4+ k;))|, >0 ki € No
I(=D)k*5 ) F(x + ki + kj)|, 20 ki€ No
[(=1)5+5 JF(e(k; + kj))|, >0 ki € No



338 J. Pecarié, S. Varosanec

Flz+)F(z+i+j+k)< Fle+i+j)F(z+i+k)
F(zi)F(z(i+ 7+ k)) < F(z(i+ 7)) F(z(i + k))

F(z 4+ ...+ i) 2 (F(z + a) /" [[(F(z + i1 + psi;)/P
1=2
F(a(iy+ ... +14) 2 (F((@))V™ [[(F(2(i1 + pji)'/P
1=2

where 1/py 4 ...+ 1/pn = 1, i, 41, i1+ ...+ in, 12P2,...,inPs are even and
7, k are odd integers.
Also, the following results is given in ([1], pp 107):
oo

The function f(z) = Z —':z" is an entire, transcendent function and has
n

n=0
the form

(1) 16 = [ edg(a),
where g is increasing, bounded function in (—o0, c0) with infinitely many points
of discontinuity, if and only if

An
lim ‘/L:]— =0 and An(Xo) >0

n—oo

Now, notice that the sequence {\.}, from previous statement satisfies the sec-
ond Hamburger’s condition and can apply inequalities (3), (4), (5) and (6) on
it.

Remark. If f have a form (7) then f is the exponentially convex
function and more general results are valid for it ([2], pp 193-194).
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