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The neutrix product of the distributions zZ" and z4 is evaluated for r = 1,2,... and
$=0,1,2,.... Further neutrix products are then deduced.

In the following, we let N be the neutrix, see J.G. van der Corput
[1], having domain N’ = {1,2,...,n,...} and range the real numbers, with
negligible functions finite linear sums of the functions

2In"'n, In"n: A>0, r=1,2,..

and all functions which converge to zero in the normal sense as n tends to
infinity.

We now let p(z) be any infinitely differentiable function having the follow-
ing properties:

(i) p(z) =0 for |z| > 1,

(i) p(z)20,

(iii) p(z) = p(-2),

1
(iv) /_1 p(z)dz = 1.

Putting é,(z) = np(nz) for n = 1,2,..., it follows that {6,(z)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-
function 6(z).
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Now let D be the space of infinitely differentiable functions with compact
support and let D’ be the space of distributions defined on D. Then if f is an
arbitrary distribution in D’, we define

fa(@) = (f * 8a)(2) = (f(2),6n(z — 1))

for n = 1,2,... . It follows that {f,(z)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(z).

A first extension of the product of a distribution and an infinitely differen-
tiable function is the following, see for example [2] or [4].

Definition 1. Let f and g be distributions in D’ for which on the interval
(a,b), f is the k-th derivative of a locally summable function F in LP(a,b) and
g®) is a locally summable function in L9(a,b) with 1/p+ 1/¢ = 1. Then the
product fg = gf of f and g is defined on the interval (a,b) by

k

19=3 () DTFaOe.

=0
The following definition for the neutrix product of two distributions was
given in [5] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D’ and let g,(z) = (g*6,)(z).
We say that the neutrix product f o g of f and g exists and is equal to the
distribution h on the interval (a,b) if

N —lim(f(z)gn(2), #(2)) = (h(z), #())

for all functions ¢ in D with support contained in the interval (a,b).

Note that if
Lim (£(2)ga(2), 8(2)) = (h(z), $(z)),

we simply say that the product f.g exists and equals h, see [4].

It is obvious that if the product f.g exists then the neutrix product fog
exists and f.g = fog. Further, it was proved in [4] that if the product fg exists
by Definition 1 then the product f.g exists by Definition 2 and fg = f.g. Note
also that although the product defined in Definition 1 is always commutative,
the product and neutrix product defined in Definition 2 is in general non-
commutative.

The following theorem holds, see [5].
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Theorem 1. Let f and g be distributions in D’ and suppose that the
neutriz products fog and fog' (or f’'og) exist on the interval (a,b). Then the
neutriz product f' o g (or f o g') ezxists on the interval (a,b) and

(fog)=flog+fod
on the interval (a,b).
We now prove the following extension of Theorem 1.

Theorem 2. Let f and g be distributions in D' and suppose that the neu-
triz products f o g®) (or f() 0 g) ezist on the interval (a,b) fori =0,1,2,.
Then the neutriz products f¥) o g (or f o g(¥)) ezist on the interval (a, b) for
k=1,2,...,7 and

k

(1) 1Wog=3 (§)(-1y1s o g9
k

2) fog® =3 (’:)(_1):'[ £6) o gJk=)
=0

on the interval (a,b) for k = 1,2,.

Proof. The theorem is true by Theorem 1 for the case » = 1 and so
suppose the theorem is true for some 7 and that the neutrix products f o g(¥)
exist for ¢+ = 0,1,2,...,7 + 1. Then by the assumption, the neutrix product
f) o g exists and then by Theorem 1, the neutrix product f(**+1) o g exists and

[f®og) = ﬂ””og+ﬂ“og
— f(k+l) 0og+ Z ( )( 1)‘[f og(t+1)](k—t)

=0

= '2_; ( )( 1)i[f o g()k=i+1)

and so

e
+> ( )(—1)‘[f o g®)(k=i+1)
e

=3 (M) ayts o gpr-ien,

=0

k
flr+) 5 g = z (f)(—l)'[_f o g(i)](k—i+1)
k
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The result of equation (1) now follows by induction.
The proof of equation (2) follows similarly.

The next theorem was proved in [6].

Theorem 3. The neutriz products Inz_ o §(")(z) and 6§(")(z)oln z_ ezist
and
3) Inz_ 0 67)(z) = [e(p) + § ¥(r)6(2),
(4) 6§ (z)olnz_ = ¢(p)s)(z)
forr=0,1,2,..., where .

c(p) = / In tp(t) dt
0

and
0, r=0,
YP(r) = i -1
i, r2>21.
=1

It was shown in [6] that by suitable choice of the function p, ¢(p) can take
any negative value.

We now define the distributions 27", zZ", F(z4,-r) and F(z_,—r) for
r=1,2,... by

(r—1)l23" = (-1 (nz4)?, (r-1)l2Z" = —(Inz_)"),

(F(z4,-1),6(x)) = /o“,~r[¢(,)_2 400 - 1).¢"“’<0)H(1—x)]dz,

Fer=ron = [+ oo - T 2L 400 - CA gDy - o) as

=0

for arbitrary ¢ in D, where H denotes Heaviside’s function.
Note that the distributions F(z4,—r) and F(z_, —r) we have just defined
were used by I. M. Gel’fand and G.E. Shilov [8] to denote the distribu-

tions z" and z_" respectively.
It was proved in [3] that

D™ = 1) g(r-1)(,
c-nr 0 ¢

'é’(r 1;') §0-1(z)

(5) z}" = F(z4,-1)+

(6) zZ" = F(z-,-r)—
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forr=1,2,....

It then follows that
(7) " =27+ (-1)2I" = F(z4,~r)+ (-1)" F(z-,—r)
forr=1,2,....

Some of the results obtained in the following theorems were first obtained
in [7], but by making use of Theorem 2 the proofs are simplified considerably.

Theorem 4. The neutriz products z_" o x5 and z35-0 z_" exist and
(8) z”"oz) =z "z} =0,
(9) 2ozt =alaT=0

forr=1,2,...and s=r,r+1,... and
. —1)-1s!
10 =7 ozt = 3 (1) Grie)+ doti- e Do),

(11) Z_’f_ ox_ " = Z (7') L(:"%c(p)é-(r—a—l)(x)

i=s+1 ¢
forr=1,2,...and s=0,1,...,7r— 1.

Proof. The product of the functions Inz_ and z3 is just a straight-
forward product of functions in L?(a,b) for every bounded interval (a,b) and
s0 :

(12) Inz_ozi =lhz_zl =0
for s =0,1,2,.... Putting g(z) = z%, we have
i o<i<s
g(i)(z)z{(s—i)! + - =7
sl6i—s=1)(z), i>s.
Thus, by equation (12) we have
Inz_ g(i)(z) =0

for i =0,1,...,s and by equation (3) we have

Iz 0g®(z) = slle(p) + § $(i — s = DL~*"V(a)
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fori=s+1,s+2,.... It now follows from equation (1) that
(nz_)Dog(z)= —(r — 1)zZ" 0 25

=3 (7)o g0
o, r<s,
= z': (::)(—l)is![c(p) + %11)(2'—.9—1)]6('“"1)(3:), > s,
i=s+1

Equations (8) and (10) now follow immediately.
Equations (9) and (11) follow similarly using equation (2) and (4).

Corollary 1. The neutriz products =" o z2 and z° o 2" ezist and
(13) Z_T_r oz® = z:_' z? = 0,
(14) z’_ () z.—*-r = z"_ I;r =0

forr=1,2,...and s=r,7+1,... and

(15) 23702l = 3 (i)wtc(p)+ Y(i— s - )0 (a),
i=s+1

(r—1)
. - T ( 1)r+a+ts! (r—s—1)
(16) z2 oz = E ) o€ ) (z)
* 1=s+1 (1) (T ) (p)

forr=1,2,...and s=0,1,...,7 - 1.

Proof. Equations (13), (14), (15) and (16) follow on replacing z by —=z
in equations (8), (9), (10) and (11) respectively.

Theorem 5. The neutriz products 7" o z5 and =35 o 7" exist and
+ + +°%4

(17) z}l oz} =2yl = z-‘i-_rv
(18) zioz " =zl =z
orr=1,2,...ands=r,74+1,... an
f , d d

£y oxh = a7+ - —&[w 1)+ 9(r - s — )]s+ (z)

+ + = v+ ( 1)'
1 —.—
(19) - % () )+ 196 - s~ Dl D),
i=s+1

2} 0z =z;’+'—((—”'——'7[¢(r 1)+ %(r = s = D= (a)

_ ( l)f ‘s (r—s—-1) z
(20) .2; (5) G e
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forr=1,2,...and s =0,1,...,7r = 1. .
Proof. It is easily proved that the product of the distribution F(z4,—r)

and the infinitely differentiable function z°® is given by

(21) F(zy,-r)z’ =2°F(z4,-1) =2}

forr=1,2,...and s=r,7+1,... and

(22) F(z4,-1)2° = 2°F(z4,-1) = F(z4,—1 + )

forr=1,2,...and s =0,1,...,7r = 1. _
Since the neutrix product is clearly distributive with respect to addition,
it follows that

z" 2’ =z [z5 +(-1)°z]
=z "ozl +(-1)’z " ozl

= [F’(:c.,., -r) — %ﬂ 6("1)(2)] z

z:_—r, S > T,
- { F(zy,—r+38)— ( (lgtlwfrl) 1)6("""1)(:1:), s<r.

Equations (17) and (19) now follow immediately on using equations (5), (13)
and (15), the product z1" z* existing when s > r.
Equations (18) and (20) follow similarly on using equations (6), (14) and

(16).
Corollary 1. The neutriz products z~" o 2% and z° o z~" ezxist and
(23) z_"oz® =z "2 =227,
(24) 2oz " =2 7T =2 "
forr=1,2,...and s=r,7+1,... and
1
g "ozt =27t 4 (——1),[¢(T - 1)+ 9(r—s—1)]6C~*"V(z)
s+1
(25) n _2; () LRt + 196 - s = D1,
1
g2 oz " =™t ¢ (_——__)T[T/’(T —D+P(r—s— 1)]6('—’_1)(:6)

1)s+ o
(26) +_z+()( L )+
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forr=1,2,...and s =0,1,...,7—1.

Proof. Equations (23), (24), (25) and (26) follow on replacing z by —z
in equations (17), (18), (19) and (20) respectively.

Corollary 2. The neutriz pmducts zToz%, "o z2 z% oz™" and
+ ) +
z% oz " exist and

(27) zTozi =z " zs =2,
(28) z77o0z® =z "z =(-1)"2%T,
(29) gioz =zie =y,
(30) ; 22 oz " =22 2z7" = (-1)"22"

forr=1,2,...ands=r,r+1,... and

e o2y = a7+ = L (e = 1) 4 plr - s - D)

(r
( 1) sl (r—s-1)

31 - 2¢(p) + P(i — s —1)}é
(31) _2+ (3) G tzeto) + ti = s - 1)s = (a),

r "oz’ = (_l)rz:r+a + .(_L-_llrl_)'['/,(r —_ 1) + 1/,(,'. —s— 1)]5('_'—1)(.’1:)
6+ 3 ([) S et + - s - D),

1=s+1
a:f._ oz~ T = z;"‘"' — (T(:_l_)__l)'[,/,(r -1 +9p(r—s-— 1)]6(""-1)
( 1) +isl (r—s-1)

3 - E L ae(p)ot=+1)(z),
(33) ;-23;1 ( ) ) c(p) z

z2 oz™ " = (—1)’2:”" + (_(—_1)_)'[,/,(,. - 1) + ¢(r —8— l)]ﬁ('"'l)(z)
(34) + Z (1) (__12::'}’_26( )5(*-0—1)(3)

i=s+1

" forr=1,2,...and s=0,1,...,7—1.

™ Proof. Equations (27) and (29) follow from equations (7), (8), (9), (17)
and (18). Equations (28) and (30) follow on replacing z by —z in equations
(27) and (29) respectively. Equations (31) and (33) follow from equations (7),
(10), (11), (19) and (20). Equations (32) and (34) follow from equations (31)
and (33) on replacing z by —z in equations (31) and (33) respectively.
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