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Modeling of Images
Bl. Sendov

Using the notion completed graph of a bounded function, which is a closed and bounded
point set in the three dimentional Euclidean space R3, and exploring the Hausdorff distance
between these sets, a metric space I Mp of functions is defined. It is shown that the functions

f € IMp, defined on the square D = [0,1], are appropriate mathematical models of real
world images.

The metric space I Mp contains pixel functions which are produced through digitizin

images. It is proved that every function f € IMp may be digitized and represented by a pixe
function p;., with n pixels, in such a way, that the distance between f and p, is no greater
than 2n71/2,

We claim that the Hausdorff distance is the most natural distance to measure the difference
between two pixel representation of a given image. This gives a natural mathematical mea-
sure for the quality of the compression produc:ﬁ through different methods. An O(nlog n)
algorithm is proposed for calculating the image of the Hausdorff difference between
two images represented with n pixels each.

2. Introduction

Every image is represented through a so called pixel function p,, with
n pixels, i. e., p, is fully defined by n given numbers.

The image compression is an approximation procedure in which a pixel
function with n pixels is approximated by a function f, such that each value
of f may be calculated from m given numbers. Using f, one produces a pixel
function pZ, offered as a replacement of p,. The goal of the image compression is
to maximize the ratio 2 in keeping the ”quality” of reproduction of p, through
p%. This "quality” is measured usually in an expert way - "how it appears”.

The problem of building a mathematical model of real world images, was
studied extensively by M. F. Barnsley [1], F. M.Barnsleyand L. P. Hurd
[2] and others. In addition to the eight basic properties of the set  of all real
world images, given in [2] we add four more. Let a set I Mp of functions of two
variables, defined on the unit square D = [0,1]%, be used as a mathematical
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model of images?, then it will be desirable that the set /Mp has also the
following properties.

i)The set I Mp(,) of pixel functions, with n = 22* pixels, has to be a subset
of IMp.

ii) The set IMp has to be metrized by a metric r in such a way that for
every element f € INp and every natural s a pixel function p,(f) exists such
that

(2.1) r(f,pn(f)) < o(s), where ’liﬁxono o(s)=0

and the function p does not depend on the function f.

iii) The metric space (IMp,r) has to be complete.

iv) If two pixel functions are very close with respect to the distance r, then
the images represented by these two functions have to be ”very similar”.

The condition, that the function g in (2.1) does not depend on the function
f, may be called ”principle of uniform digitizing”. The pixel functions used in
the practice of digitizing are within very small range of s, (usually 7 < s < 11).
That means that the principle of uniform digitizing is valid. If the principle of
uniform digitizing is not valid, then there will exist a number € > 0, such that
for every natural sg, there will exist a real world image, modelled by a function
f with r(f,pn) > €, for every pixel function with n = 22 pixels.

Let us mention, that the classical L, spaces have the property ii) for very
restricted sets of functions, which are not rich enough to model real world
images.

A successful mathematical model for real world images are the fractals [2].
The most natural distance in the fractal geometry is the Hausdorff distance.
The Hausdorff distance has been used also in approximation of functions (8], [9],
[10]. To obtain completeness in a functional space, wider than the space of con-
tinuous functions, metrized by the Hausdorff distance, one needs to ”complete”
the graphs of the functions or to consider segment valued functions.

The function spaces topologized by Hausdorff distance are not Banach
spaces. This makes them peculiar and more difficult to use. Our purpose in
this paper is to overcome the prejudices and to show the usefulness of functional
spaces, metrized by Hausdorff distance, for mathematical modeling of real world
images.

In section 2 we consider the set Bq of all bounded single valued functions,
defined in a compact €2 and the set SCq of all, so called segment continuous
functions, defined in €, which are segment valued and their graphs are closed
and bounded. We say that f C g for f € Bq, g € SCq if f(z) € g(z) for all

2 That means to use the model Ri; of F. M. Barnsley and L. P. Hurd [2].
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z € Q and define the completed graph F(f;z) = [I(f;z),S(f;z)] of a function
f from Bgq as the intersection of the graphs of all functions from SCq containing
the function f. We factorize the set Bgq, considering two functions not different
(equivalent) if they have equale completed graphs.

We call a function f Hausdorff continuous if every other function
with the same completed graph is equivalent to f. The set of the H-continuous
functions, defined on the compact 2, is denoted by HCq. The complited graphs
of the functions from HCgq are a subset of SCq. The main advantage of the set
HCq is that it is a linear space.

We metrize the defined functional spaces, using a metric p(z,£) between
two points z,£ of the compact 2. First we introduce a metric in the space
Rg = RxQ, where R is the set of the real numbers, as follows

pa((2,2), (€, €)) = max{|z - (}, a7 p(2,€)},

where z,£ € R, 2,{ € Q.

The completed graph of every bounded function, defined on 2, is a closed
and bounded subset of Rg. We define the Hausdorff distance r(a, f,g) with
parameter a between two functions as the Hausdorff distance between their
completed graphs, considered as subsets of points in the space Rq. The func-
. tional spaces Bq, SCq, HCq, metrized with the Hausdorff metric r(¢o; f, g) are
denoted respectively with B, SCg, HC§.

In section 3 it is proved that SC§ is a complete space in the case &t = D =
[0,1]2. The metric space H C§ is not complete, as in the case of continuous
functions with uniform norm. Using the Hausdoff metric, we define the modulus
of H-continuity 7(a, f;é) such that the necessary and sufficient condition for
the function f to be H-continuous is

Jim 7(a, £:6) = (@, £50) = 0.

As we have to expect, the subsets of H-equicontinuous functions in HCp
are complete. _

We denote by IMp C HC4 the set of single valued and upper semicon-
tinuous functions (f(z) = S(f;z)). A function f € IMg is called an image
function of classvif

T(a, f;6 < vé/a.

The space of image functions of class v is denoted by IMp” and it is proved
that this space is complete.

In section 4 we study the properties of the space IM} and give evidents
in support of our claim that this space is a very natural mathematical model
of the real world images.
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In this section we consider all types of contractive operators used in fractal
image compression and prove, that if such an operator has the contractivity
factor A it is an operator in IMp" if A < 1 — % This solves the theoretical
problem of the convergence with the fractal transforms for grayscale image
compression.

3. Sets of functions

3.1 Notations and definitions

Let © be a compact, R be the set of points on the real line (the set of
the reals) and [R] be the set of all segmets [a,b], a,b €R of real numbers. We
shall consider single valued functions f : @ —R and segment valued functions
f : Q@ —[R]. The function f is called bounded, if its uniform norm

Iflea=1fl = sgg{IZI : z€ f(x)} < oo,

is finite. We shall be interested on applications in image processing and there-
fore will pay special attention to the case when  is the unit square D = {(z, ) :
z,y € [01 1]}

We will use the notations:

Bq - the set of all bounded real functions f, defined on (2,

Cq - the set of all continuous real functions f, defined on €,

BSq - the set of all bounded segment functions f, defined on .

The value f(z) of a segment function f is a segment [f(z), f(z)], where
1 ,f € Bq.

SCq - the subset of all f € BSq with compact graphs. For = D the
set SCp is the set of all bounded and closed subsets of the three dimentional
Euclidean space Rgs, such that if F € SCp then the projection of F on the
plane (z,y) coincides with D and F is convex toward the axis z orthogonal to
the plane (z,y). The functions from SCq, for reason to be explained later, are
called segment continuous.

Let p be a distance in Q. In the case = D we shall use the square distance

(3'2) p((z’ y)$ (fa 7’)) = ma‘x“z - ﬂ? Iy = 77']

We define the eztended Baire functions for every segment function f € BSq
and hence for every function f € Bq

I1(R,6, f;z) = I(6, f;2) =inf{z: z € f(u); u € O(z,6) N Q},
5(,6, f;2) = S(6, f;z) = sup{z: z € f(u); u € O(z,86) N Q},
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where O(u,6) = {z : p(z,u) < 8}, and the Baire functions
1(Q, f;z) = I(f;2) = Jim I(§, f;2),

S(Q, fi2) = 5(f;2) = lim S(, f;2,9).
It is directly seen that for the modulus of continuity

w(f‘l&) = sup{S(6/2,f;z) - 1(6/27f;3)} '
z€D

is valid.
Let G be a subset of QxR. We say that f C G if (z, f(z)) € G for every
z € Q.

Definition 2.1. The completed graph [10] of a function f € Bg is
the segment function F(f) € BSq, defined by

F(f;z) = [I(f;2),5(f; )]
It is easy to see that

F(H= () G,

GeSCp,fCG

and that for every f € Bq, F(f) € SCq, |F(f)l = IfI-

Two functions f,g € Bq shall be considered not different, f ~ g, if F(f) =
F(g). This divides Bgq in classes of equivalence.

If f € BSq, then I(f) € Bq (resp. S(f) € Bq) is lower (resp. upper)
semicontinuous. Let us recall that a function f € Bgq is lower (resp. upper)
semicontinuous if and only if there exists a sequence {f,}{° in Cq such that for
each n fu(z) < f(z) (resp. fa(z) 2> f(2)) and lim,—o fu(z) = f(z) for all
z € Q.

Definition 2.2. To every segment valued function f € §Bq there corre-
sponds a single valued function f € Bq defined in the following way

- 1
f(z) = §(I(f;$) + S(f;z)) forevery z € Q.
A single valued function f € Bgq is called normal if

f(z) = f(z) for every z € Q.

From the definition of the normal functions and the Lebesgue integrability
of the semicontinuos functions, we have
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3.2 Segment continuous functions

Let us consider certain properties of the functions from SCgq, in the case
Q = D, which justify the name segment continuous. We first prove an
intermediate value property.

Lemma 2.1. If f € SCp and for (z1,41),(z2,y2) € D and 2, = f(z1,%)
and z; = f(z2,y2), and the inequality z; < z; holds, then for each zy € (21, 22)
there ezists tg € [0, 1] such that zp € f(z1 + (z2 — z1)to, y1 + (y2 — ¥1)t0).

Proof. If S(f;z1,%1) > 20, then we can set ¢, = 0. Otherwise,
S(fiz1,1) < 20 £ S(f;22,92)

and we set
to = sup{t: t € [0,1],S(f;21 + (22 — z1)t, 31 + (y2 — %1)t) < 20}
Then by the lower semicontinuity of I(f) we get S(f;zo,%) = I(f;Zo,¥%0),
where zo = z1 + (22 — z1)to, Yo = %1 + (¥2 — ¥1)to, and the lemma is proved.
The proof of the following lemma is similar to the proof of the previous
one.

Lemma 2.2. If f,g € SCp, and (z1,%),(22,¥2) € D are such that

I(f;z1,31) > S(g;21,3) and I(g;22,%2) > S(f; 22, v2),
then there ezists to € [0, 1] for which

f(z1+ (22 — z1)to, 1 + (v2 — 11)to) N g(z1 + (22 — Z1)to, Y1 + (v2 — 11)t0) # 0.

According to the definition of the set SCq, for every f € SCgq there exist
two functions ¢(z) = I(f;z) and ¥(z) = S(f;z), where ¢ is lower semicontun-
uous and 1 is upper smicontinuous, such that f(z) = [¢(z), ¥(z)]. The converse
statement also holds, as we now show.

Lemma 2.3. If ¢,% € Bq, where ¢ is lower semicontunuous and v is
upper smicontinuous, and p(z) < Y(z) holds for every z € Q, then the function
1(z) = [p(z), ¥(z)] belongs to SCq.

Proof. Itis easy to note that the lower semicontinuous functions are the
fixed points of the operator I in Bg and the upper semicontinuous functions
are fixed points of the operator S in Bg. According to the hypotheses of the
lemma, we obtain

F(fiz)=[1(f;2),5(f;2)] = [I(p;2), S(¥; 2)]
= [¢(2), ¥(2)] = f(2).

This completes the proof.
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8.8 Hausdorff continuous functions

Definition 2.3. Denote by HCgq the set of those functions f € SCq for
which the conditions g € SCq and g(z) C f(z) for all z € Q jointly imply f = g.
A function f € HCq is called Hausdorff continuous (H-continuous).

The name ”Hausdorff continuous” will be justified later on when we suply
a characterization of H-continuity in terms of Hausdorff distance.
Every continuous function is H-continuous, but not vice versa.

Lemma 2.4. A necessary and sufficient condition for a function f € Bq
to be H-continuous is

(3.3) S(I(f)) = S(f) and I(S(f))= I(f).
Proof. For the necessity, if (2.3) fails then

9(z) = [I(5(f;2)), S((f;2))]

would be properly contained in f(z) = [I(f;z), S(f;z)] for some z’. Thus, for
this g, we would have g € SCq, g(z) C f(z) for all z € Q, but not f = g.
For sufficiency, suppose (2.3) holds and F(g) C F(f), i.e.,

(3.4) I(f;z) < I(g;z) < S(g;2) < S(f;2)

for all z € Q. According to the monotonicity of the operators § and I, we
obtain from (2.3) and (2.4) that S(I(g)) = S(f) and I(S(g)) = I(f). On the
other hand, from the definition of the Baire functions, it follows that

S(1(9);z) < S(g;2), 1(5(9);i2) = I(g;2),
and therefore S(g) = S(f) and I(g) = S(f), i.e., F(g) = F(f).

Corollary 2.1. The equality F(S(f)) = F(I(f)) is a necessary and suffi-
cient condition for f to be H-continuous.

Corollary 2.2. For every function f € HCgq the corresponding normal

function f € Bgq is such that f C f and F(f)y=F(f) = f, or f = f. This
shows that the completed graph of f is f.

We define the modified extended Baire functions for every
segment function f € BSq and hence for every function f € Bq

Io(6, f;z) =inf{z: z € f(u); u € Oo(z,6) N Q},
So(6, f;z) = sup{z: z € f(u); u € Oo(z,8)NQ},
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where O¢(u,6) = {(z,y) : = # u, p(z,u) < §}, and the modified Baire
functions

Io(f; z) = 5]-_1120 10(6’ f; z)’ sO(f; .’t) = 811»120 SO(6a f; z)'

Lemma 2.5. A necessary condition for f to be H-continuous is: for every
z € Q and every z € f(z)

Io(f;2) < 2 < So(f; 2),
and hence

I(f;z) = Io(f;2) and S(f;z) = L(f;z).

Proof. Let f € HCq and the hypotheses of the Lemma be violated at
a certain point z; € 2. We define a function g € HCq as follows. For = # z,,
set g(z) = f(z), and

g9(z1) = %[Io(f;zx) + So(f;’-'tl)]-

Then F(g) C F(f) and F(g) # F(f).

Corollary 2.3. Let f € IMg. For every point xo there erist a sequence
{z,,}{°, z, € @ and z!, # zo, such that :

lim f(z4) = S(f;zo)
and a sequence {z!/}{°, = € Q) and z! # z¢ such that
nJj1 n n

lim_f(z%) = I(f; o).

4. Functional spaces with Hausdorff metric

Let (M, p) be a metric space, where p(a,b) is the distance between two
elements a,b € M. In his famous book, F. Hausdorff [4] defined the distance
between the subsets of a given metric space in the following way. Let A C M.
We shall denote by U(e, A), where € > 0, the set of all points £ € M such that
p(z; A) < ¢ e,

U(e,A)={z:2 € M and p(z;A) < €}.

The infimum h(A, B) of those € for which U(e, A) D B and U(e, B) D Ais called
the Hausdorff distance or distance in the sense of deviation
of sets between the sets A and B induced by the distance p. If M is complete
and 2™ is the set of all compact subsets of M then the Hausdorff distance
between subsets is a metric in 2M.



Modeling of Images 93

4.1 Hausdorff distance between functions
We shall define the Hausdorff distance in functional classes. Let for a > 0

(4.5) pa((2, 2),(£,¢)) = max{|z — ¢|,a™"p(z,€)}
be the box distance in 2xR.

Definition 3.1. The Hausdorff distance with parameter a
[10] between two functions f,g € BSq is defined as the Hausdorff distantce
between the two closed and bounded point sets F(f), F(g) in @xR. This
distance shall be denoted by r(«; f, g).

The Hausdorff distance between two functions from BSgq, according to the
Definition 3.1 is defined by the formula

(46)  r@aifg)=max{ sup il pal(:2), (60,

o o) e P2 2) & }:

When it is clear in which compact {2 the Hausdorff metric is defined, we
will use for short r(a; f,g) = r(Q,a; f, 9), and r(f,g) if a = 1.

Now we shall define the Hausdorff distance in another way only for the
functions from HCgq and shall prove the equivalence of the two definitions.

Definition 3.2. The absolute value of the © — difference with
parameter a > 0 between two functions f,g € Bq is

|/(2) ©a 9(@)| = max{ , inf  max(lf(z) - Cl,a"p(z, )

. _ -1
(6,(1)211""(!)111“”9(2) (l,a P(z,f)]}-

Theorem 3.1. If f,g € HCq, then
r(e; f,9) = sup|f(z) Ba 9(z)|.
z€N

Proof. As the completed graphs of the functions are convex toward the
z axis, in (3.6) we may replace under two max’es

(z,2) € F(g) by z€Q,:z=1(g;2),5(9;%)
and
(z,2) € F(f) by z€Q,:z=I(f;z),5(f;z).
Then the Theorem follows from Corollary 2.3.
The next four lemmas follow directly from the definition of the Hausdorff

distance between functions, when {2 is linear space and the distance p in Q
is homogenous, i.e., if A > 0 is a constant, then for every z,£ € Q we have

p(Az, AE) = Ap(z, €).
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Lemma 3.1. Let the compact Q0 be a linear space, the distance in ) be
homogeneous, f,g € Bq and c is a constant, then

r(a; f+c¢,9+¢)=r(e; f,9),

r(a; cf, Cg) = ICIT(OICI; £y g)’
r(e; f,9) < max{1,a'/a}r(a; £, g).

Lemma 3.2. If f,g,9,% € Bg and for every z € Q the inequalities
e(z) < f(z) < ¥(2),

e(z) < 9(z) < ¥(z),
hold, then
r(e; f,9) < r(a, ¢, 9).

Lemma 3.3. Let f,g € Bq and Sls C S be such that for every zo €
Qs there ezists a z € Q with p(zo,z) < 6. If f(z) = g(z) for z &€ Qs, then
r(a; f,9) < a7'6.

Lemma 3.4. For every four tunctions fi, f2,91,92 € Ba we have

r(a; fi + f2, 01 + 92) < v(a; f1,01) + r(a; f2,92),

and hence

N. N N
r(3 far Yo 0n) <3 (e farn)-

n=1 n=1 n=1

Definition 3.3. Let 2 be a compact and {2 = Q \ 8Q be its interior. We
say that the compact Q2 is tiled by the compacts {Q,}V if @ = Ullv Q, and
Q.-U(l,' = 0 for i # j.

A division of the square D in smaller (closed) squares {D;}}’, by lines
parallel to the coordinate axes, is an example for tiling of D.

Lemma 3.5. (First Tiling Lemma). Let Q = Uf’ Q, be a tiling of the
compact 2, f,g € SCq and let fn,g, € SCG_; 1 < nlegN be the restrictions
of f,g on S, respectively, i.e.,

f(z) forz € Q,,

n = ’ <n<N.
fn(2) {0 forz € 2\ N, 1<n
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Then:
(R, f,9) < max r(Qn,a; fn, gn)-
Proof. We use the definition (3.6) of the Hausdorff distance. Obviously,
for every z € Q,, andz € F(f) we have
= inf ) £ o )
Az,2)= o i) max{|z — ¢|,a™"p(, )]

< inf - ,a—l z, — An z,2),
- 669..l?eF(g;z)max[Iz ¢l p(z,$)] (z,2)

and for every z € Q, and z € F(g) we have
ma-xﬂz - ('s a"lp(z, f)]

ma‘x”z = C|9 a_lp(z,f)] = Bﬂ(z, z),

B(z,z) = inf
£€N, CEF(£3€)

< inf
€€, CEF(£:€)
as Q2,, C Q, since

r(Q,a; f,g) = max{ sup A(z,z), sup B(z,2)}

z€N,z€F(f) z€N,z€F(g)
<max{ sup Ap(z,2z), sup Bn(z,2)=r(Qn,a; fn,gn);
z€N.,2€F(f) z€0N.,2€F(g)

1<n<N,

which completes the proof.

4.2 The space of the segment continuous functions is complete

We now focus our attention to the completeness of the metric space
(SCp,r(a)) = SCg. In order to prove this completeness, we need some auxil-
liary statements that will be proved in advance.®

Let A = {(z,y): 20 <z < 20+ 45, Yo < y < yo + 46} be a square divided
in 16 subsquares A;; = {(z,y) : 2o+ <z <20+ (1 +1)6, Yo+ 6 <y <
vo+ (j +1)8}; 4,5 =0,1,2,3. For every four values M; ;; i,j = 0,1, attached
to the corners on A, we can uniquely define a continuous function xy on A
interpolating the values M; ; if:

i)x is constant on the corner subsquares,

ii)x is a linear function of one variable on the border subsquares, and

iii)x is a quadratic function of the form azy + bz + cy + d on the inner
subsquares.

3 The same method may be used to prove the completeness of SCq if Q is a cube in thé
m-dimentional Euclidean space R3. The case m = 1 was proved in [9].
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Precisely, the function x(z,y) = x(A; Mg, M1,0, Mo, My 1; z,y) is defined
as follows:

X(x’ y) e Mi,j on A3i,3j; 19] = 0’ 1’

x(z,y) = 2671 (My,; — Mo ;)(z — zo — §) + Mpj on A1 3;U Az3j; j = 0,1,

x(z,y) =26"1(M;y — M;o)(y — yo — 8) + Mig on Azi1 UAgzi2; i = 0,1,

x(z,y) = 46"2(Myy — My o — Mo + Moo)(z — z0 — 8)(y — yo — 6)+

26~1 (M0 — Moo)(z — o — 6) + 2671 (Mo, 1 — Moo)(y — o — 6) + Moy

on UA;;; %,7 = 1,2.

From the explicit definition of x it is easy to estimate the modulus of
continuity of this function.

(4.7 w(x;t) < 32M6~ 't where M = max{|M;;|: i,7=0,1}.
J

Lemma 3.6. For every function f € BSp and for every § > 0 there ezists
a continuous function ¢ € Cp such that

(4'8) . 5(69 f;za '!/) < 1/’(373/) < 5(46’ f;szy)

<
for all (z,y) in D and such that the modulus of continuity of v satisfies the
inequality

(4.9) w(;t) < 32)f|6"e.

Proof. Let é > 0, z;,y; = 416 and _A..-,j = [Zi-1, i) X [yj-1,¥;] for
,7 = 1,2,3,...,N, where N = 1/4§ .(Without loss of generality, we may
consider that 1/46 is a natural number.) Let

M;; =sup{z: z € f(z,y), (z,y) € Ai;}
and
M;;=max{My,: i—k+j—-1<1, k<i, I<j}

We define

Y(z,y) = X(Aij; Mi—1,j-1, M j—1, Mi_1j, M; j;2,y)  fot(z,y) € Ai;.
It is obvious that % is continuous and satisfies the inequality (3.9).
The validity of the inequalities (3.8) is directly checked.

The proof of the next Lemma is the same.
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Lemma 3.7. For every function f € BSp and for every § > 0 there ezists
a continuous function ¢ € Cp such that _

(4.10) S8, fiz,y) < p(z,y) < S(46, f;z,y)

for all (z,y) in D and such that the modulus of continuity of ¢ satisfies the
inequality w(p;t) < 32| f]6~'¢.

Now we shall prove the completeness of the metric space SCf. Let us
mention, that if we consider the completed graphs of the elements of SC§ as
closed end bounded point sets in R3, metrized by the Hausdorff metric r(a),
every Cauchy sequence of functions in SCg has a limit poiut set, which is closed
and bounded. But we have to prove that this pomt set is a completed graph of
a function from SC.

Theorem 3.2. The space SC§ is a complete metric space.

Proof. Let {}n}‘f° be a Cauchy séquence of functions in SCp. Then for
every ¢ > 0 there exists n(¢) such that for p,q > n(e€) the inequality

(4.11) (e fp, fo) < €
holds. It is necessary to prove that there exists fo € SCp and
(4.12) Jim (e fa, fo) = 0.

From the definition of the Hausdorff distance follows that every Cauchy
sequence is uniformly bounded and, i.e., there exists a number M > 0 such
that ~

' |fal < M for n=1,2,3,..

For every f, and § > 0 we choose a function %, s as in Lemma 3.6. All
the functions of the sequence {1, s}7° have modulus of continuity w(t, s;t) <
32M 6~ 't and therefore are equicontinuous. Consequently the function s de-
fined by

1/’6(2:, y) Y Ii_mn—wo"/"n.&(x, y)

has tfle same modulus of continuity. The same can be said for
()96(xs y) = nl_i_’noloson,&(xa y) |

where the function ¢, s is chosen for f, as in Lemma 3.7. From the way we
have defined the functions v, s it follows that

1/111,26(2:’ y) > 1/’71,8(2:9 y) and <r°n,26‘s ‘Pn,&(z, y),
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and hence we have

(4.13) Pn,25(7,Y) < ¢n,5(2,Y) < VYns(,y) < ¥n25(2,y).

Then for § = 1/2,1/4,1/8,... we have two sequences of functions {¢,}{° and
{¥n}$° such that

‘Pn(z, y) < ‘P’n+l(z7 y) < 'pn(z) y) < ¢n+1(za y)

and hence, if we write
(4.19) P(z,y) = lim gn(z,9), ¥(z,9) = lim pu(z,y),

then ¢ is lower semicontinuous and % is upper semicontinuous. Thus, by Lemma
2.3, the function

(4'1‘5) fO(z’ y) = [‘P(zv y)a ¢(39 y)]

belongs to SCp.

Let us now show that (3.12) holds for the function (3.15). It is sufficient
to establish for every € > 0 the existance of ngo = ng(€) such that for n > ng,
we have

(4.16) r(a; fn, fo) < €.

Since the functions ¥, s are uniformely continuous (because w(%ns;t) <
3261 Mt), for each € > 0 and (z,y) € D there exists ng = ng(¢€) such that for
all (z,y) € D and n > ng we have

(4.17) |%n,6(z,y) — Ys(z,y)| < e.
According to Lemma 3.6,

(4.18) 5(8, fa;2,9) < ¥ns(2,y) < 5(46, fa; 2, ).
We obtain from (3.17) and (3.18) that

(4.19) S(8, fni 2, y) — € < Ys(z,y) < 5(46, fa; z,y) + €.

The left-side inequality of (3.19) gives S(fa;2,y) — € < ¥s(z,y) and according
to (3.14) and (3.15) we have

(4.20) S(fo;z,y 2 S(fniz,y) — €.
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The right-side inequality of (3.19) according to (3.13) gives
(4.21) S(fo;z,y) < 5(46, fn; z,y) + e

We can prove in similar way that

(4.22) 1(46, fo;2,9) — € < I(fo; 2,y) < I(fa; z,y) + €.
From (3.10) — (3.22) and é = ae/4 it follows that

(4.23)  I(ae, fo;2,y) — € < I(fo; 2,y) < S(fo; 2,y) < S(ae, fn;2,y) + €

(4.24) I(fo;z,y) — € < I(fn;2,9) £ S(fas2,9) < S(fo52,9) + €

The equation (3.23) shows that for every (z,y) € D and for every z €
F(fo; z,y) there exist (£,7) € [zt — €,z + a¢] X [y — ae,y+aeJN D and ¢ €
F(fn;€,m) such that |z — (| < €. The inequality (3.16) provides that for every
(z,y) € D and every z € F(fn,z,y) there exists ( € F(fo,,y) such that
|z — ¢| < €. Applying Lemma 2.2, we obtain (3.16). The theorem is proved.

From the proof of the last theorem, (3.20) and Lemma 3.2 we have.

Corollary 3.1. If {f,}$° is a Cauchy sequence in SC§ and fo is the limit
of this sequence, then for every e > 0 there ezists ng = no(€) such that for every
n > ng, the equality

r(a; I(fo), S(fo)) < r(a; I(e, fa), S(€, fn)) + €
is valid.

Let us mention that the space HCp of the H-continuous functions is not
complete under the Hausdorff metric, on the analogy of the incompleteness of
the set of continuous functions under the uniform norm.

4.8 Modulus of H-continuity

Definition 3.4. Let f € Bg. We define the modulus of
H-continuity (with paramerer a) of f by the formula

(a, f36) = r(a; 5(8/2, £),1(6/2, f))-

Directly from the definition of the modulus' of H-continuity one obtains the
following facts:
i) The modulus of H-continuity does not exceed the modulus of continuity

(4.25) m(a, f;6) < w(f;6).
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Indeed, by definition
T(av fs6) = T(a; 5(6/2’f)a1(6/2vf)) < s‘elg IS(6/2’fv :L') - 1(6/2af;z)l
= sup {lz=¢l: z € F(f;21); ¢ € F(f;22)} = w(f;96).
z1,22€R,: p(z1,22)<E

ii) The modulus of H-continuity tends to the modulus of continuity as the
parameter tends to zero:

al_i‘u‘.l.or(a,f; 8) = w(f;6).

iii) The modulus of H-continuity is a monotone nondecreasing function of
5, i.e., if §; < &3, then 7(a, f;6,) < 7(a, f; 62).

Lemma 3.8. (Second Tiling Lemma). Let Q = Uf’ Q,, be a tiling of the
compact Q, f € SCq and let f, € SC3 ; 1 < n < N be the restrictions of f
on Q,, i.e.,

f(z) forz € Q,,
n = ) < < .
Fn(2) { 0 forz € Q\ Q,, lsns W

Then:
™(Q,0a; f,g) <a” 6+  nax, (s & fry gn)-

Proof. Let us define the functions
f(6;2) = 1(R,8/2, f;z), and f(6;2) = S(Q,6/2, f;z).
According to the Definition 3.4 and Lemma 3.5 we have
(4.26) (R, a,f;6) = r(Qa; £, 1)) < (e (s a5 f,)s Fu))-

Let Q,5={z: z € Q, and p(z,00,) < 6§}, where, as usual, p(z,A) =
infgeq p(2.£). By the definition,
I(Rn,68/2, fr;z) = f(6;2) and S(0y,6/2, fr;z) = 7(6,2)
for z € R\ Q525 1 <n<N.
Then, using Lemma 3.3, we obtain
7(Qny @5 £, (8), Fn(8)) < 7(Qmy 5 £, (6), [(Rn, 6/2, fr; 2))H+
(U, @ I(R0y §/2, fr;2), S(QUn, 6/2, fn; )+
(2, @5 S (Qn, 6/2, fn; .’E),Tf_n((S)) <
a 6/2 + (U, @, fr;8) + @716/2,

and according to (3.26), the proof is completed.
We shall give now definition of H-continuous function through the modulus
of H-continuity, which justified the name Hausdorff continuity.
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Theorem 3.3. The function f € Bp is H-continuous if and only if

slin+10 7(a, f;0) = 7(a, £;0) = 0.

Proof. According to the definition of the modulus of H-continuity, it
follows that

Jim 7(a, £6) = lim_ r(a; S(6/2,1),1(6/2, 1))

= r(a; S(f), 1(f)) = r(a; F(S(f)), F(I(£)))-

We see that lims_. 40 7(, f;6) = 0 holds if and only if F(S(f)) = F(I(f)).
According to Corollary 2.1, this is a necessary and sufficient condition for f to
be H-continuous. The Theorem is proved.

Definition 3.5. The set of function HCq, C HCgq is called
H-equicontinuous if there exists a nondecreasing function T with

sl—iﬂo () =0,
such that for every f € HCq , the inequality
m(a, f;6) < 7(8); 6§>0
is valid.

Theorem 3.4. The set of H-equicontinuous functions HCp , is complete.

Proof. Let {f,}$° be a Cauchy sequence in HCp  C SC§ and fo be the
limit of this sequence in SC§, which exists according to Theorem 3.2. Then,
according to the hypothesis of the Theorem and the Corollary 3.1, for every
€ > 0 there exists ng = ng(€) such that for every n > ng, the equalities

T(a, f0;0) = r(a; I(fo), S(fo)) < r(a;I(€, fn),S(€, fn)) + €
= 7(a, fn;2€) + € < 7(2€) + ¢,

hold. As the number ¢ > 0 is arbitrarily chosen, since 7(a, fo;0) = 0 and the
Theorem is proved.

5. The space of image functions

Having in mind the eight properties formulated in [2] an the additional
properties given in the Introduction we define an image modeling space of func-
tions. '
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Definition 4.1. The set of the H-continuous functions defined on the
compact © and normalized with the condition*

(5.27) f(z) = S(f;z) for every =z € (2,

is denoted by IMg. We call a function f € IMg an image function with
support Q.

The metric space (I Mgq,r(a)), where r(a) = r(a; f,g) is the Hausdorff
distance with parameter a, is denoted by IMg. We call the space IMg an
image space.

The space of the functions f € IM§ with modulus of H-continuity
(R, a, f; 8) satisfying the condition

(5.28) (e, f;6) < a tvé

is denoted by IMJ"”. We call the space IMy"” an image space of class
v;and a function f € IMq" a image function of class v.

We will be interested mostly in the case = D and shall show that the
fractal transform operators [2)[p. 186] are operating only in image spaces of
class v > 1.

We claim that the functions from IMp"Y, for v > 1, are the natural math-
ematical models for the grayscale images. Some arguments for this follow.

Theorem 4.1. Every image function is Lebesgue integrable, and every
image space IMp, of finite class is complete.

The proof of this theorem follows from the upper semicontinuity of the
image functions, according to (4.27), and from Theorem 3.4.

Definition 4.2. Let @' C Q be a compact. Following [2] [p.11], we define
a clipping operation ¢(%, f):: IMqg — IMq as follows:

f(z) forz € @,

Q, fiz)=
o, fiz) {0 forz € Q\ .

It is immediately seen that every image space /MG is closed under the
operation clipping. From the Second Tiling Lemma 3.8 it follows that the
space IMJ" is closed under the operation clipping only if it is of the class
v2>1.

If Q' = Q, then ¢(Q, f;z) = f(z).

The image space I Mp is a linear space.

4 It is natural to have an additional condition 0 < f(z) < 1.
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Definition 4.3. For two functions f,g € IMp we define the function
h € IMp as the sum of f and g in IMp as follows. We take the normal
functions f, g, corresponding to f, g, and the normal function h=f+§. Then
h is the uniquely determined function from IMp equivalent to h.

If f € IMp and X is a number, then the function A f is defined as the
function g € I Mp equivalent to the function A f.

In short, the Definition 4.3 tells us that after every arithmetic operation
with functions from I Mp we have to replace the result with the equivalent func-
tion from IMp. This is natural, as we do not consider two functions different
if they have equal completed graphs. In this way we mav consider IMp as a
linear space.

5.1 Operators in the space of the image functions

Definition 4.4. An operator © : M — M in the metric space R = (M, r)
isa contractive operator with contractivity factor A <1 if for
every pair of functions f,g € M the inequality

r(0(f),0(9)) < Ar(f,9)
holds.

The following theorem is a common knowledge.

Theorem 4.2. If R = (M,r) is a complete metric space and © is a con-
tractive operator in R with contractivity factor A\ < 1, then:

i) There ezxists a unique eigen-function (fized point} fe satisfying the equa-
tion O(f) =

i1) For every fo € R, the iterative sequence f, = O(fm-1); m=1,2,3,...
is convergent and has as a limit the fized point fo.

11i) There is an error estimation

r(fe’fm) r(f09f1)

We shall define an useful contractive operator.

Definition 4.5. Let the function » : R—R is Lipshitz with Lipshitz con-
stant A > 0, i.e.,
lv(2) — v(t)] < Alt = ¢'|.

If A< 1,wecallv contractive function with contractivity factor A. The
set of this functions is denoted by L.
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Let w : 2 — Q be an invertible Lipshitz tansformation with Lipshitz
constant A, i.e.,

p(w(z), w(£)) < Ap(z,§).

and wl(w(z)) = z. If A < 1, we call w contractive mapping with
contractivity factor. A. The set of these mapings is denoted by Lq ».

Definition 4.6. Let v € Ly, w € Lgx; A < 1land @ = w(Q) = {z :

z = w(€),€ € N}. We define the operator A(v,w)(f) : Mg — IMgq in the
following way:

v(f(w™1(z))) ifz € V',
A(v,w)(f;z)=1¢0 ifze Q\Q,,
as element of IMq ifz € 9SY.

where 9 is the contour of Q and 2 = Q \ dQ is its interior.
Lemma 4.1. The operator A(v,w), determined by Definition 4.6 is a con-

tractive operator from IMgq in I Mg with contractivity factor A, i.e., for every
two functions f,g € I Mq we have

(5.29) (2, a; A(v, w)(f), A(v,w)(9)) < Ar(, a; £, 9).

Proof. According to First tiling lemma,

(2, a; A(v, w)(f), A(v, w)(g)) = (', 5 A(v, w)(f), A(v, w)(g)),

r(Q\ S, a; A(v, w)(), A(v, w)(9)) = 0.
First we estimate
ma,x[lA(f; :C) - Cl»a-lp(xa E)]
- sen,,(iet}rfwg);f) max(|o(f(w™'(2))) = v(w™ ()], e p(<, €)]
i - “o(w(z), w
< q il max((o(f(2) = (O] a”p(w(z), w(€)]
inf max[A[|f(z) — ¢|, Aa"p(z, €)]

T €€N, (EF(g;5¢)

<A inf a6
T geq, lCIéF(g;s)ma‘x[lf(z) CI p(z {)]

inf
EEQ, CEF(A(9)5€)

A

A
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and in the same way
max[|A(g; z) — |, "p(, €)]

ma'x[lg(z) = Cl’ a_lp(z’ f)]:

inf :
€€Q, CEF(A(£)3€)
<A inf
€€q, CEF(£i€)
which proves (4.29). '
From (4.29) we have that

r(Q, a; I(A(f)), S(A(S))) < Ar(R, 05 I(£), S(f)) = 0,
as f € IMgq, since A(v,w)(f) € IMq, which completes the proof.

Corollary 4.1. Let A(v,w) is the contractive operator with contractivity
factor X\ < 1, determined by Definition 4.6 and p > 0 is a number, then

(5.30) (R, a; pA(v, pw)(f), PA(v,pw)(9)) < pAT(Q, o; f, 9).

Theorem 4.3. The operator A(v,w) with contractivity factor A < 1 is an
operator in IMp", i.e., A(v,w): IMp" — IMp"” if
1
. <1l-—-.
(5.31) A<1 -
Proof. Let f € IM3" and A(v,w)(f) = A(f). According to Second
Tiling Lemma 3.8 and Lemma 4.1, if ; = w(2), we have

7(Q,a,A(f);8) < a™'6 + (R, a, A(f); 6)
< a6+ Ar(Q,a, f; ).

And in view of (4.31)
7(Q,a,A(f);6) < (14 Av) < o™ vé,
since A(f) € IMG", which completes the proof.

5.2 Iterated function systems

In this part we shall prove some analogs of the basic theorems of M. F.
Barnsleyand L. P. Hurd [2] [pages:186,187] for convergence of Fractal Trans-
form in the spaces IM#. Our goal here is mostly theoretical.

In Fractal Image Compression, two types of operators are used [2], which
may be global or local. We shall prove that these operators are operators in
the image spaces. Let us mention, that without Hausdorff distance, which we
introduce, the theorems for the convergions of the iterative siquences of these
operators were not satisfactory.

The notion iterated function sistem (IFS), is well established, see for ex-
ample [6,5,7,2,3). We will consider IFS in the complete metric space IMg".
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Definition 4.7. Let A} = {A(vn,w,)}) be operators settled in Definition
4.5 with contractivity factors A < 1, and let D, = w,(D); n = 1,2,3,..., N,
where {D,} is a tiling of D. We define the operator ¥(A})(f;z) = ¥(f) :
IMg — IMp as follows

An(vn, wn)(f;2) ifz € D,
Y(f;z)= ; n=1,2,3,...,N.
as element of IMp ifz € D,

The operator V¥ is called an IFS operator,ora tiling operator.

Let, in addition to the definition of the operator ¥, {D.}¥, D! C D be
compacts and CV = {c¢(D%, f)}V be clipping operations (Definition 4.2). We
define the operator E(AY, ,CN)(f;z) = E(f) : IMJ — IMP as follows

An(Vn, w,)(e(DL, f;2)) ifz € D,
E(f;z) = ; n=1,2,3,...,N.
as element of ITMp ifz € 0D,

The operator = is called local IFS operatoror local tiling operator.

Let PV = {p.}); po >0and py+p2+...+po8v =1, and D, =
Prwn(D); n=1,2,3,..., N.5 We define the operator ®(AY, PN)(f;z) = ®(f) :
IMg — IM3 as follows

2.,1:(-_-1 pnAn(vn, inn)(f; z) ifz € U,];v=1 b'n,
®(fiz) =
as element of IMp ifz € U,,N=l oD,.

The operator @ is called an IFS operator with probabilities, or a
stochastic operator.

Let, in addition to the definition of the operator ®, {D.}V, D! C D be
compacts and CV = {¢(D%, f)}YV be clipping operations (Definition 4.2). We
define the operator T(AY, PN,CN)(f;z) = Y(f): IM§ — IM$ as follows

nN=1 PnlAn(Vn, Prwn)(c(Dy, fi2)) ifz € UnN=1 Dn,
T(f;z) =
as element of I Mp ifz € UN_, aD,..

n=1
The operator T is called local IFS operator with probabilities, or
local stochastic operator.
If © is any of the operators ¥, =, ®, T, then O is called a fractal
transform operator.

- We are ready now to prove the basic theorem for the grayscale fractal
traftsform operators (2] [p.186]. - .

® {D,}Y is not necessary tiling, §},, may overlap.
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Lemma 4.2. If the contractivity factor of the fractal transform operator
© is A< 1andv = 1/(1 - ), then © is mapping the image space IMp" in
itself.

Proof. Let f,g € IMp". Then, according to the First Tiling Lemma
and Lemma 4.1,

r(D,a; ¥(f), ¥Y(9)) < lgza&xN 7(Dn, ; A(vn, wn)(f), A(vn, wn)(9))
< )‘T(D’ a;f,y),
since ¥ is contractive operator with contractivity factor A < 1.
According to Second Tiling Lemma and Lemma 4.1, for every f € IM i\,"’,

7(D,0,¥(f);6) <a™'é + X 7(Dny @, A(vn, wa)(f); 6)5.32
< a6 + Ar(D,a, f; §),
and as A =1 —1/v and f is of the class v, we get
7(D,a,¥(f);6) < a™16 + Aa"wé = a6,

and the Lemma is proved for the operator V.
In the same way we consider the operator =.
For operator @, from Lemma 3.4, Lemma 4.1 and Corollary 4.1, we have

N
"‘(Da a; ¢(.f)a Q(g)) < Z r(Dm a;PnA(”minn)(f)’PnA(”minn)(g))

n=1

N
< Ar(D,a; £,9) Y pa = Ar(D;; f,9),

n=1

since ® is contractive operator with contractivity factor A < 1.
According to Second Tiling Lemma, Lemma 4.1 and Corollary 4.1, for

every f € IMp”,

N
"(D,a,®(f);6) < 7’6+ Y 7(Dn, @, PaA(vn, pawn)(f); 6)5.33

n=1
< a6 +A7(D,a, f;9),
and as A =1 —1/v and f is of the class v, we get
(D, a,®(f);6) < a~'v8,

and the Lemma is proved also for the operator ®.

In the same way we consider the operator T and complete the proof.
From Theorem 4.2 and Lemma 4.2 we get finally the following result.
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Theorem 4.4. (Theorem for fractal transforms) Let © be a fractal trans-
form operator with a contractivity factor A < 1, and let v = 1/(1 — X). Then:
i) For any function fo € IMpD", the iterative sequence

{fm}s’ fm= 9(fm—l), m=1,2,3,...

18 convergent.

i1) The operator © has a unique eigen-function fo € IME’" and fo =
lim; o0 frn-

i1i) For every natural m we have

r(D,X; fo, fm) < T5 7(Ds a5 fo, f)-

Corollary 4.2. Let © is a fractal transform operator with contractivity
factor A < 1, then for any function fo € IM§, the iterative sequence

{fm}; fm = O(fm—1), m =1,2,3,...

is convergent, and the limit fo of this sequence is a function from IMp'", where
v=1/(1-2A).

Proof. Having in mind the proof of Lemma 4.2 and especially the in-
equalities 4.32 and 4.33, we have

7(D,a, fm36) < @ '8(14+ A+ A2 + ...+ A™71) + A" (D, @, fo; 6)

and consequently
(D, a, fo;6) < a”18/(1 =),

which completes the proof.

5.3 Pizel functions

For simplicity, in this section we shall use the Hausdorff distance with
parameter @ = 1 and the notations r(a) = r, IM7 = IMp.

For every natural number s we define the partition

D(s) = {d}; = {(z,y): z € (127°,(i+ 1)27°), y € (j27°, (3 + 1)27°)}

14,5=0,1,2,...,2° — 1}.

The squares d; ; are called pixels.
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Definition 4.8. A function f € IMp is called pixel function with
resolution sif fis constant in every open square @ ; of the partition D(s).

The set of the pixel functions with resolution s in IMp is denoted by
IMp,)-

The set IMpy,) is a complete subset of the metric space /Mp. Obviously,
IMpy,) is a 22* dimentional linear subspace of IMp.

Let us mention, that a function f € IMp(,) is completly defined if it is
defined in the center (§;,7;) of every pixel d;;; i, = 0,1,2,...,2° — 1. Every
function f € IMpy,) is defined by 2%¢ real numbers

fi; = f(&,m5); 4,5 =0,1,2,...,2° - 1.
The metric subspaces I Mp(,) are included in each other, or
IMp(s) C IMp(e41); 8 =1,2,3,....

Definition 4.9. For every function f € IMp we define the so-called
pixeling operator Py(f) € IMp,) in the fopllowing way

Jur , f(2): dz ifz € U720,
Py(f32) =

as an element of IMp ifz € U};Z4 8Dy,s.

It is obvious that the pixeling operator is a projecting linear positive oper-
ator P,(f) :IMp — IND(,).

Let us mention, that the Hausdorff distance r(f, P,(f)) between an image
function f and its transform with the pixeling operator may be arbitrarily big.
On the other hand, the physical transformation, digitizing the real images is a
kind of integration. This fact calls for some thoughts for an integral variant of
the Hausdorff metric.

Let W C IMp and

E(r,W;f) = jaf r(f,P)

be the best approximation of the function f with elements from the set W with
respect to the distance r.

Now we shall prove that the principle of uniform digitizing is valid for all
functions from IMp.



110 Bl. Sendov

Theorem 4.5. For every f € IMp
E(r) IMD(.”; f) < 21—
and

d(IMp,IMp(,)) = sup E(r,IMp(,; f) =2'"°.
feEIMp

Proof. Let f € IMp and

inf{f(z,y): (=,y) € d; a5y,

M; ; = sup{f(z,y): (z,y) € d""},
i,7=0,1,2,...,2°"1 —

mi,j

where d" is the closure of @} 71,

We geﬁne the function A G I Mp(,) in the following way. As we mentioned
already, it is sufficient to determine the values h;; of the function h in the
centers of the pixels d ;- Then, let

h2i2; = h2ig1,2j41 = m;;,
hait1,2; = h2i2j+1 = M j;
,7=0,1,2,...,2°°1 - 1.

Let (z,y) be an arbitrary point from D and let (z,y) € d,";l, hence |z —

27041 — 27| < 2% and |y — j27°F! - 27°| < 27°. Then m;; < f(z,y) <
M; ;. From the definition of the function h it follows that the point (i2~*+! 4
272,527+ 4 2-* f(z,y)) € F(h). Therefore

B0 max(lf(z,y) - C|,max{|z - €l,ly - nl}] < 27",

From the other hand, there exist two points (&1,m),(€2,72) € :i?';'—l such
that (&1, m, m;), (&2, m2, M;) € F(f), therefore

inf max[|h(z,y) - (|, — &, |y - < 9-s+1
en i, maxllh(z, y) = (|, max{|z — €], |y — nl}] <

Consequently,
|f(z,9) © h(z,y)| < 27**! and r(f, k) < 27°*1.

That completes the proof of the first part of the theorem.
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To prove the second part, let us consider, for € € (0,27*"1), the function
g € IMp defined as follows

-1 for(z,y) € d.,
ge(z,9) =41 for (z,y) € df,
0 for (z,y) € D\ (d,ud¥),

where _ .
d; = {(2,9): 2,y €(0,6)}, d/ ={(2,9): z,y € (¢,2¢)}.
It is easy to see, that for every function f € IMp,), the inequality

r(ge, f) > 272+ — 2¢

holds, and consequently
litgor(gg,f) =27+,

From the last there follows the second statement of the theorem, which com-
pletes the proof.
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