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We give an exponentially fitted polynomials Petrov-Galerkin method of finite elements, ap-
plied to singular self-adjoint problem.We derive an exponentially fitted finite difference scheme
and we give an error bounds. We confirm it numerically.

1. Introduction.

Polynomials Petrov-Galerkin method of finite elements has no ability to
follow the exponential feature of the exact solution expecially in boundary layer
when the solution changes very rapidly [4]. But the exponential functions suit
to this kind of problems and because of that we fit trial space [3], [5] with
piecewise exponentials. The difference scheme derived in this way has a second

order of uniform convergence in a small parameter ..
We recall that the scheme is uniform in a small parameter € and it is of

order p (see [2]) iff
]u(z;) - u,~| < kP
where u(z;) is the exact solution at the point z; and u; is the computed one,h
is the mesh size,M is a constant independent of mesh size h and perturbation
parameter e. )
In the second Section of the paper we give a description of Petrov-Galerkin

polynomial method of finite elements. We apply it to the singularly perturbed

two-point boundary value self-adjoint problem. Therefore, in the third Section
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we generate the difference scheme and we determine parameter which give an
exponential means to Galerkin method. We give an error estimate in uniform
norm concerning small parameter €. In the Section 4. we confirm experimentally
the theoretical predictions.

Note. We suppose uniform partition of interval [0,1] with h = 1/n,z; =
th,i = 0(1)n — 1,n being an integer. Throughout the paper M will denote
different constants independent of h and e. R will denote part in error estimate
which is negligible. We denote the truncation error of difference scheme by 7;(u).
We have 7;(u) = Ru; — QLu;, where R and L are corresponding operators. By
p we denote he~1/2. Then p; = p:/zﬁ, where p; = p(z;).

2. Petrov-Galerkin method of finite elements.

Consider two-point singularly perturbed self-adjoint problem
(1) Lu= —eu" + p(z)u = f(z), uw(0)=A,u(l)=B

where € is a small parameter, 0 < € < 1, functions p(z), f(z) are sufficiently
smooth and p(z) satisfies condition p(z) > p > 0.
From [4] u € H} is the Galerkin ( or weak ) solution of (1) iff u € Hg(0,1)
and
B (u,v) = (v, v") + p(u,v) = (f,v),

for all v from HJ(0,1), where (-,-) denotes innerproduct in L2(0,1).

We choose two spaces of finite equal dimensions 7% and V" called as test
and trial spaces. Let {¢;},7 = 1(1)n and {%;},i = 1(1)n be the basis of the
trial and test space respectively. Then the Galerkin approximation is:

Find an {u;} so that

n
uc—_‘z ui¢i) 1‘0'_‘/17"%:3

=1
where {u;},7 = 0(1)n satisfy system of equations

k=141

Z Bc(¢k’ '/’t) = (f, 1/%'), = l(l)n— 1.

k=i—-1

We use polynomials spaces of Christie et.al.[1] which uses linear (hat) functions

¢i(z) = ¢(z/h - 1), i =1(1)n,
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as a trial spaces, where

0 [s| > 1
#s)=91+s-1< s<0
1-s80< s<1,
or for the test space we use
¥i(z) = ¢i(z) + a(z)é(z/h - i), i=1(1)n
where
0 |s| > 1
6(s) =< —3s(s—-1)0< s<1
—6(-s)—-1< s<0.

and a(z) is exponential function which we determine later.
The properties of functions which belong to these spaces are:
(9)supp(9i(2)) = [Zi—1, Ti1); (#9)gi(zi) = 1; (388) i,y di(z) = 1, for all z
from [z1,Zpn—1]-
Our bilinear form is now:

B (¢, i) = (8, ¥0) + Bi(ir %) = (fir %), i = 0(1)n.

For p; and f; we use a piecewise constants of the form p; = (pi + pi-1)/2; fi
also. From this method we obtain the difference scheme:

(2) Ru; = Qfi(h?/€), wo=A, m=B,i=1(1)n-1

or
Ui + Tiui + r,-+u.-+1 =(¢ fir+a&fi+ q.-*f.'+1)(h2/€),

where the coefficients of the scheme are given by:
17 = =1+ pX(1/6 + aif4), rF = —1+p}1(1/6 - @iy1/4),
re = 24 p2(1/3 + aif4) + Pha(1/3 - aina/4),
o = 1/4(1 + &), ¢F =1/401- cin1), & = +qf,
pi=pip®, P= he /2, p; = p(z:).
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We determine o; so that the truncation error of the scheme (2) would be equal
to zero, or ; = Ru; — QLu; = 0, where
Ru; = uoi{r] ezp(po) + r{ + r}ezp(—po)}
QLu; = (h*/€)uoi{(Po — pi-1)a; ezp(po) + (Po — pi)gf+
(Po — pi+1)¢; ezp(—po)}, toi = ezp(—(po/€)'/ ).

From Ru; = 0 since Q Lu; = 0 for p = const we obtain

@; = 2/(p} sinh p;)[4sinh? p; /2 — p? /3 cosh p; — 2/3p7]

1/2

where p; = pp}/ 2, pi = p(z:i), po = ppy’ " In order to obtain more simmetric
fitting factor we set p;_; = p;+1 = p; and we obtain

i1 =1/((p} — p3/2) sinh po){4 sinh? po/2 — 1/3p? cosh po
—2/3p? + (p? — p3)/2 cosh po}.

3. Proof of the uniform convergence.

We shall prove a second order of uniform accuracy for the scheme (2). We
have

(1) lu(z:) = w] < M ||Al|" max|r(u)]

where 7;(u) is the truncation error of the scheme (2), and A is the matrix of
lynear system of equation (2). Since ||A||™! > (r] + r{ + rF)"! > M(p?)~!,
where ||.|| is the usual max norm, we obtain by simple calculation the matrix
estimate of the discretization (2):

) Al > M/p.

In the estimate of truncation error we shall use the asymptotical expansion
of the exact solution given by Doolan et.al.[2].

Lemma 1. ([2]) Let u(z) € C*[0,1] and p’(0) = p’(1) = 0 then the solution
of (1) can be ezpressed as

(3 w(z) = ug(z) + wo(2) + g(z), where
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uo(2) = poezp[—z(p(0)/€)'/?]
wo(e) = prezp[—(1 — )(p(1)/€)*/’]
Po, p1 are bounded functions of € independent of x and
(4) lg'(2)] < M(1+€7/%),i = 0(1)4.
Lemma 2. Let p = const, f(z) € C?0,1]. Denote by {u;},i = 1(1)n — 1
the solution of lynear system (2). Then the following estimate holds:
(5) [u(z:) — ui| < Mh2
Proof. When p = const we determined «; so that truncation error

7i(uo) = 0. Similarly, for another boundary layer function we have 7;(wo) = 0
for p = const. So we must estimate only part g in (5). We have

(6) 7i(9) = {Vg@ + 7NgW + 7Dg@ 4 1 R.

Since when p = const, 1".(0) = 'r‘.(l) = 0. We have

o = R {(r7 +11)/2+ (a7 + ¢ +6) - P2/2(aF +¢7))-
and ¥ = h?(—p?/12), which gives with (6) the estimate
Ir?g"| < M 7%,
for all p. Then,
o = W3 {(r} - r7)/6 + (¢F — ¢7) — pi(aF — 47)/6}
and T‘(a) = h3(—a;/2). When p < 1
a; = —p/6(1 — p*/6) + O(p*),

which gives
73] < Mhp.

In the oposite case, when p > 1, we have a; < M. It yields with (6)
|7g®)| < Mh*pmin (5, 1).

The higher derivatives are of the lower order. So we obtain in (8)

(7) Imi(9)| < Mh?p”.

From (3), matrix estimate (4) and (9) we obtain (7).
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Theorem 1. Let p(z), f(z) € C?[0,1]. Let {u;},i = 1(1)n — 1 be the ap-
prozimate solution for (1) obtain by ezponentially fitted Petrov-Galerkin method
described above, then the following estimate holds:

(8) _ lu(z:) — ui| < MA2.

Proof. From Lemma 2. T‘-(O) e 1"-(0) = 0, and |7i(¢9)] < M h?p? when
p = const. We have

7i(9) = Ti(9)(p) + (Pi-1 — P) 75— ap._ (p) + (pi+1 — p)—+R

where p = h(p;/€)!/2.
By simple calculation we get

ITi(g)l < MR*p?* + O(h®p min (p, 1)).
From (3) and (4) and previous estimate we obtain
(9) lg(z:) — gil < Mh2.

We showed that for p = const, 7;(uo) = 0 and because of that

ri(u) = (ri(uo)(p) = 0) + (pic1 — p)aip}l(p) + (pig1 — p>£—l(p) +R.

Since
.+ —pl <M hp, |picy = p+pivs— pl < M h%p
and
CoT;
< Mbp
Ia”,:l(p)l <Mp

we have that
|7i(uo)| < MR?p?,

for all p. From this estimate, (3), and (4) we obtain
(10) |uo(z:) — uoi| < M h2.

For wo(z) we obtain the same . Then (11), (12) and the estimate for wo with
(5) conclude the outline of the proof.
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4. Numerical evidence.

We present numerical test to illustrate the previous theory. The computa-
tions were performed in Fortran 5., double precision on PC-computer.
We applied the difference scheme (2) to the problem

(1) —eu” + u=—cosmz — 2er®cos 27z u(o) = u(1) = 0,
with the exact solution

u(z) = (exp(— (l\;;)) + ezp(—%))/(l + ezp(-—%) — cos 2mz?.

(see [2]). We use the double mesh principle from([2]) to compute rates and
maximum errors. Recall ([2]),

rate = {In(E') — In(E?)}/In2

where E! and E? are
EO = max |u) - w3l
for the mesh lenght A = 1/N and h = 1/(2N), respectively. We started with

N = 8 and ended by N = 512. The number of iteration is denoted by k. Results
are displaied in Table 1.

k 0 1 2 3 4 5
€ rate rate rate rate rate rate
1 1.99 2.00 2.00 2.00 2.00 2.00

21 1.99 2.00 2.00 2.00 2.00 2.00
2-2 1.99 1.99 2.00 2.00 2.00 2.00
2-3 1.99 2.00 2.00 2.00 2.00 2.00
2-14 1.99 2.00 2.00 2.00 2.00 2.00
2-5 1.96 1.97 1.99 2.00 2.00 2.00
2-6 1.93 1.98 1.99 2.00 2.00 2.00
2-7 1.97 1.98 1.99 2.00 2.00 2.00
2-8 1.97 1.99 1.99 2.00 2.00 2.00
2-9 1.94 1.99 1.99 2.00 2.00 2.00

Table 1.

We also find MAX = maxo<i<n |[u(2i) — ui|, where u(z;) is the exact
solution of (13) and u; is the approximate one attained at mesh points for

special N. See Table 2.
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e/N 16 32 64 128 256 512
2-3 .27E-02 .51E-03 .20E-03 .35E-04 .73E-05 .26E-05
2-9 27E-2 .51E-03 .20E-03 .35E-04 .73E-05 .26E-05

10~ .88E-03 40E-03 .12E-03 .35E-04 .T2E-05 .26E-05
10-6 .39E-03 .24E-03 .67E-04 .30E-04 .62E-05 .26E-05

Table 2. MAX

In a case of variable parameter p(z) we consider the following problem
—eu” + (14 z)*u = 4(32% — 3z + 2)(1 + z)?
u(0) = -1,u(1) =0,

taken from [2]. The rates of uniform convergence for this problem are displaied
in Table 3. p. is the everage rate for the same e.

k 0 1 2 3 4 Pe

1 1.91 1.98 2.00 2.00 2.00 1.98
10-1? 1.93 1.98 2.00 2.00 2.00 1.98
10-2 2.10 2.03 2.01 2.00 2.00 2.03
103 2.55 2.33 2.11 2.03 2.01 2.21
10—4 2.09 2.52 2.54 2.25 2.08 2.30
10-5 1.93 2.01 2.28 2.60 2.44 2.25

Table 3.
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