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On the R-Order of Convergence of Classes of Iterative Methods

N. Kjurkchiev, A. Andreev

Presented by BIl. Sendov

In this note we consider classes of interval methods. Improved estimates for their R-order of
convergence are derived.

1. Introduction

Recently many authors have considered two-sided and interval methods
which guarantee a possibility for practical solution of different problems in nu-
merical analysis. A machine realization of the methods is proposed in the spirit
of the computing conception, which assumes the utilization of a computer which
executes the arithmetic operations with directed rounding in the sense of [1].

Parallel interval iteration can be found in [3] (see also [18]). The method
makes use of advanced computer arithmetic and has been recently realized in the
frames of two program systems, which provide such arithmetic: PASCAL-SC
(19] and HIFICOMP [20].

The following relations appear for a class of single-step iterative methods
for the simultaneous determination of the zeros of n-degree polynomial (for
instance, the methods considered in Alefeld and Herzberger [2], Petkovic [3],

(17])
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(1) A < (WY (Zihﬁ"‘“’ 2 (hﬁ'"))q) :
n—1 — P
i=1,...,n; p,q€ N.

We shall assume that the starting approximations z§°), . ,27(10) (where
(0)

z; ' can be either the points or circles in interval arithmetic) are chosen suffi-
(9)

ciently close to the zeros &;,...,£, so that (in the case when 2;°’ are points)

B < b= max A% <1, AP = |20 -, j=0,1,..., i=1,2,...,n.

Theorem A. (M. Petkovic, L. Petkovic, L. Stefanovic [4]).
The R-order of convergence (see J. Ortega, W. Rheinboldt [5]) of a simul-
taneous iterative process I for which (1) is valid, is bounded from below by

Pq
(2) OR(I9£) >p+gq+ m = a("aP,‘I)a E = (61,627---671.)'

Let an iterative method I in a Banach space B produce sequences of
iterates {z(¥)} with limj_., z(¥) = z*. In many cases, one can show for the
corresponding sequences of errors e(¥) = ||z(¥) — z*|| the recursion

-

e(k+11) < ,712[ (e(k_,-))q‘(P+1)’ k>0

=0

where v,p,q are positive and independent of k. In order to calculate the R-
order of convergence Or(I,z*) of I one has to compute the unique positive root

o{"* of the polynomial

n
Poa(z) = &™) — (p+1) )" ¢'=z", p>0,g>0.
=0

J.Schmidt [7] has shown that

(3) Or(1,2%) > ofit!

is valid. The problem of determination of bounds for ap,q(") is considered in
[8-12, 21, 23].
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2. Main Results

The purpose of this paper is to give better lower estimates in (2) and (3).
Using the same notation as in theorem A, we state the following

Theorem.

| =y
(4) Or(1,6)>3p + 29 + —(2p+q) (;;:rqq) !

Proof. More readily applied is the following theorem (see E. Deutsch
[6]): Let A = (a;;) be a nonnegative and irreducible n X n matrix and let
the positive vectors z,y be defined by Az = Dz, ATy = Dy, where D =

diag(dy,...,d,)>0. If z is not an eigenvector of A then it follows for the
spectral radius p(A) of A
) (a)> Lz

p o

In [3], M. Petkovic derive the estimation (2) by means of (5). We shall
use the improve estimate from E. Deutsch’s theorem [6] which states that for
all

t>p(A) + 1!;1%)& {d; — aii}

it is fulfilled

n SiN: T
- Yot ¥ Dz
(6) P(A)>G = t—[[l(t—d.)v >
The matrix
P q 0
P q
An(pyq) = 0 .

P q

P q 0 »

corresponds to the recursion (1) (see M. Petkovic [3]) and the estimation (6)
will be applied to A,(p, q). It follows from (1) that

h$m+l) < hsgnﬂ-l)

b

where the vectors s(™) = [sgm), oo, 88™)T are successively computed by

8(m+1) — An(P, q) s(m)
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starting with s(°) = [1,...,1]7. Therefore, we have
D = diag(p+4q,p+4q,-..P+¢,2p+9),
v = (Wl pta...p+q g, 7>0,
v'z = (1/9)(p+ ) (n-1),

v'Dz = (v/9) ((p+q)(n—1) + pa).
In view of (6) and since
t = maxd; + max(d; —ai;) = 3p+2¢

it follows that

p(An(p,)) > t — [ (¢ - di)=w/v"=

=1

OR(Iv f)

v

q
= 3p+ 2 — CUE)(2p 4 g)(n-1)p+a) (_2’; “: ‘Jq) ,

This is an improvement of the bound in theorem A. Some numerical
comparisons between the estimations (2) and (4) are given in the next table.

n| p| q| a(n,pq) | B(n,p,q
2 | 1] 1] 2.5000... | 2.5505...
213|3| 7.5000... | 7.6515...
2 | 5|5 |12.5000... | 12.7526...
51| 1] 21250... | 2.1483...
513|3]| 63750... | 6.4448...
51| 5|5 |106250... | 10.7413...
1011 20556.. | 2.0668...
10| 3| 3| 6.1667... | 6.2005...
10| 5| 5 | 10.2778... | 10.3341..

Using the same notation as in J. Herzberger’s theorem [8] the next
inequalities gives an estimation for a},f:,) in (3) (see [22]):

NOMCERL
Pi(pt g+ 1)

’

7 1 -
(7) p+q+ P9 (p+q+ 1)
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where
A;ﬂq) = - 2 , B(n) — (1+€£nq))n,
) 1+ \/1 —4n(p+ Dg"/(p+ q + 1)(»+D) P y
() _ 2p+1)g" (p+q+ )™ — (p+ g™ (n+1)) "

PET 1 4 VT—dn(p+ D2 [ ((p+a+ )" — (p+ Lg*(n+1))2

Using the estimation (7) we may establish the inequalities

Ay _(P+ 1)gnt!

OR(0,{e®}) > ol > py g+ 1 - Al™ gt

which slightly improves the estimations given in [8].

The basic facts about R-order of convergence of sequences (including in-
terval ones) are given in W. Burmeister,J. Schmidt [13],J. Herzberger
(14], N. Kjurkchiev [15].

3. Applications

Following J. Herzberger [8], as an application of our theorem we con-
sider a class of iteration methods for the successive improvement of an including
interval matrix X(©) for the inverse of a nonsingular matrix A

Yo - xO

r—2
(8) Y& = {m(y®) Y (1 - Am(Y®))' +

1=0

+ XOU - Am(Y )13 X B,

r—2
XED = {m (Y*H) ST - Am(Y FHD)) 4
1=0

+ Y(k+1)(I _ Am(y(k+1)))r—l} n Y(k+1) ,

(the parameter r € N has to be greater than 1 and m(X) is the midpoint
matrix of X ). For the R-order of convergence of procedure (8) instead of the
estimation

_ n+1
OR((8),A7") > n—+2(2r— 1)
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given in [8], we get from (7)

_ r(r— )™ (a1
Or((8),A7')>2r—1 - @(—Tﬁ A

Consider the interval iteration process of Newton type for finding real

zero £ of nonlinear equation f(z) =0 (see J. Herzberger [16])

(9)

Yo - x©

m(X %)

(k+1)  _ f(m(y *+1)) )
X k+1 — {m(Y(k+l)) _ f,(Y(k+1)) n Y(k+1 .

Using the estimation (7) we may establish

2 n
0((9),8) >3 — WA{;“).

These results can be applied also for determination of the computational

efficiency of the considered iterative methods.
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