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This paper is a continuation of the paper [1]. Now, for the cubic equation (1) reduced to
the one-parametric form (3), a simple resolvent differential equation, representations of the
analytic solution by elementary functions, new geometry of the roots, and a possibility for
tabulation of the roots in the ”irreducible case” are found.

1. Introduction

For the cubic equation
(1) 2 +pztqg=0 (p#0),
our transformations [1,item 3.1]
z = (ov/—p/3 (argo -p/3 = %; arg(—p) = 6; —7<0 < 7r) ,

)
t= A (VR = 3072),

where the sign 0 denotes the principal value of the quadratic radical lying in
the angle (—m /2,7 /2], reduced it to the following one-parametric form

(3) G-3¢-2t=0 (V).
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The three-valued algebraic function { = f(t) of the equation (3) is inverse
to the polynomial

(4) t= HO = 3¢5

According to (4) (see details in [1, item 3.1] ), the three branches (x = fi(t) (k =
0,1,2) of the function { = f(t) are regular and univalent in the fundamental
region G : {t ¢ g}, where g = goUg; with go : [—00,—1] and g; : [1,+00], and
they are determinated by the values (3, = fo,1(0) = +v3 and ¢ = f,(0)=0
(the branch (o = fo(t) is the principal solution of the equation (3)).

2. Resolvent differential equation of the cubic equation

In (2, pp. 36-37 and 41] it is proved that the analytic solution of each
trinomial algebraic equation of degree n in the Mellin form satisfies some su-
perior Goursat hypergeometric differential equation of order n which is called
Mellin resolvent differential equation. According to this result,
Mellin resolvent differential equation of the cubic equation in the Mellin form
is some Clausen hypergeometric differential equation of the third order (as the
Goursat equations for n = 3 are called). Now, we shall show that the analytic
solution of the cubic equation in our form (3) satisfies one special Gauss hyper-
geometric differential equation of the second order which we shall, in turn, call
resolvent on the basis of the following propositions:

Theorem 1. In the fundamental region G every two of the three
branches (x = fi(t) (k = 0,1,2) and the corresponding continuous continuations
Cf (k = 0,1,2) on the banks of the cut g\{x1} of the three-valued algebraic
function ( = f(t) of the cubic equation (8) constitute a fundamental system of
solutions of the special hypergeometric differential equation

#¢ d¢ 1
(5) a-m Tt 1%+ 50 =0

with three regular singular pointst = £1 andt = oo.

Proof. The assertion follows from the results in [1], namely: both from
Theorems 3 and 4 and from Theorem 6 (in a such easier way), in view of the same
structure of the formulas (68)—(69) and the linearity of the argument in them.
In the cut plane z ¢ [—00,0] U [1, +00] the Gauss hypergeometric functions of
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the first and the second kind

{ uz(1—22) = F(-1/3,1/3;1/2;2),

u3(1 - 22) = 2/3 oﬁF(l/G, 5/6; 3/2; z)
and their continuous continuation on the banks of the cut z € (—o00,0) are
fundamental solutions of the hypergeometric equation of the same name :

&
(7 z(l-—z)ﬁ + (%—Z)% + %w =0

(6)

with three regular singular points 2 = 0,1 and z = oo.

By changing the variables 2z = (1—1)/2, w(z) = ((t) the equation (7)
is reduced to the equation (5), while the functions (6) to the functions uz3(t),
considered in G. Hence, in the fundamental region G the functions uz3(t) and
their continuous continuations on the banks of the cut g;\{1} are fundamental
solutions of the equation (5).

Now it is obvious that in [1, Theorem 6] every two of the representations
(68) and of the representations (69) (for t € g;\{1}) are linear substitutions
of the corresponding solutions uz3(t) with determinants different from zero.
Hence, conversely, in [1, Theorem 6] every two of the functions (x = fi(t)
(k = 0,1,2) and of the functions Cf (k =0,1,2) form a fundamental system
of solutions of the equation(5) in the fundamental region G and on the infinite
interval g\{£1}, respectively.

This completes the proof of Theorem 1.

Every two of the representations (48) from Theorem 3 in (1] are also
linear substitutions of the other pair of Gauss hypergeometric functions of the
first and the second kind ug,(t) with determinants different from zero. Thence
and from Theorem 1 it follows that, conversely, the pair up1(t) (t € G) is
also a fundamental system of solutions of the equation (5) (this can be shown
by the substitution z = t? as well, which reduced (5) to the corresponding
normal Gauss hypergeometric equation, differing from the equation (7) with the
factor 1/36 in front of w ). Analogously, from the representations (76)—(77) in
Theorem 7 in [1] it follows that each pair of functions /2t ug(t), (1/ kV/2t)us(t)
(k=0,1,2; 0<|argt| <) is a fundamental system of solutions of (5). Besides,
from the permanent principle of the solutions under their analytic continuations
it follows that each of the branches (o = fo(t) and (; = fi(t), represented
by the corresponding function (63) from Theorem 5 in [1], is a solution of the
differential equation (5) everywhere in its own domain of existence.

According to Theorem 1, the roots of the cubic equation (3) as functions
of the parameter ¢ are expressed with linear substitutions of each pair of funda-
mental solutions of the differential equation(5), and, conversely, the solutions of
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the equation (5) are expressed with linear substitutions of any pair of roots of
(3). Hence, the problems for the solution and the investigation of the algebraic
equation (3) and of the differential equation (5) are equivalent. Because of that
we shall call the equation (5) the resolvent differential equation of
the cubic equation (3). Since the resolvent equation (5) has an infinite set of
fundamental systems of solutions, it follows that the roots of the cubic equation
(3) have an infinitre set of such representations as well. In particular, we can
express the roots by other special functions. For that purpose, in the resolvent
equation (5) a corresponding transformation should be made. We shall restrict
ourselves to obtain representations of the roots in elementary functions.

3. Representation of the branches by elementary functions

The following theorem is a bridge between the analytic solution of the
cubic equation (3) and the algebraic solution by the Cardano classical formula:

Theorem 2. Let the fundamental region G be mapped by the principal
and regular branch of the function

(8) T(t) = arccost = %ln(t+o\/t2—1)

univalently onto the band {0 <R <7}, where the upper bank of the cut g and
the lower bank of the cut go are respectively mapped by means of the functions

r(t+1i0) = arccos(t+1i0) = } In(t+ V/t2-1) (t € q1),
9)
r(t—i0) = arccos(t—i0) = 3} In(t+ }/12-1) (t € g0)

one-to-one on the right bank of the cut {RT = 0; ST < 0} and on the left bank
of the cut {1 = 7; ST > 0.

Then the regular and univalent branches and the boundary values of the
three-valued algebraic function ( = f(t) of the cubic equation (3) have represen-
tations in elementary trigonometric functions

e = fi(t) = 2<:os*—*"—“"—‘3‘—"13—"I (k=0,1,2;t € G),

(10) (G = 2cos MWTD& (k=0,1,2;t € 1),

(¢ = 2cos arccos(t—0)+2kn ‘?0 +2km (k=0,1,2;t € go).
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Corollary. Let the one-valued function

(11) T = arccost = arg(t+ oVt2—1) — i In|t+ oVt2-1|

be introduced for consideration in the finite t-plane, the set of values of which
constitute the band {0 < RT <7} and the rays {R7 = 0; S7 < 0},{RT = 7; 7 >
0}, joined to it.

Then the roots z, (k = 0,1,2 ) of the cubic equation (1) are equal to

zk = 204v/—p/3 cos arccost+2kx (k=0,1,2; t = —-'—'q—'Pi'éo)-

3 2(ov/-p/3)*’
(12)

Proof. By the transformation ¢t = cos7, {(r) = n(7) the resolvent
equation (5) takes the form
d’n 1
1 — 4+ =7 =
(13) 2t gn =0
which has the functions cos7/3 and sin7/3 as fundamental solutions. Hence,
the resolvent equation (5) tolerates, as fundamental solutions, the elementary

functions A . A .
(14) ug(t) = cos rc:;:os , u7(t) = sin rc:;:os
for an arbitrary regular branch of the many-valued function Arccost.
Let us choose the regular branch (8), constituted by the regular branch
of the Zukovski inverse function

(15) v(t) = t+ oVt2—-1 (t€QqG),
the boundary values of which are given by the relations
(16) v(t+i0)=tF 4Vt2—1 (t € go),

v(tFi0)=tF V121 (t € g1),

obtained by circuit of the branch points ¢t = F1 along the indicated banks of
the cut g. Besides, the upper and the lower bank of the cut go and the lower
and the upper bank of the cut g; are mapped by means of the corresponding
functions (16) one-to one onto the upper banks of the segments v € [—o0, —1],
v € [-1,0], v € [0,1] and v € [1,+00], respectively. Hence, the function (15)



136 Pavel G. Todorov

maps G univalently onto the upper plane Sv > 0 in the following way: the
half-plane 3t >0 onto the half-disc |[v| >1 N Sv > 0, the segment ¢t € (—1,1)
onto the half-circle || = 1N Qv >0 and the half-plane St <0 onto the half-disc
|v] <1 N Sv>0. Let us note that the function (15) maps the imaginary axis
t € (—i00,+i00) onto the imaginary half-axis v € (0,+i00). By means of the
functions (16) and (15), the principal branch of the function (8) maps the two
banks of the cuts go and g, one-to-one onto the left and the right bank of the
cuts 7 = 7 and N7 = 0, respectively, and the region G univalently onto the
band {0<RT<7}.

Considering the functions (14) chosen so as, to express the other pair of
fundametal solutions (49) (fort € G ) in [1, Theorem 3] of the resolvent equation
(5) by their linear substitution

(17) uj(t) = cejus(t) + crjur(t) (5 =0,1),

where cg; and c7; are some constants. Differentiating (17) with the help of
the rule for differentiating the hypergeometric function, we obtain two systems
for their determination, which for ¢t = 0 yield cgo = —c71 = V/3/2 and ¢70 =
ce1 = 1/2. Thus, from (17) we find that the Gauss hypergeometric functions of

the first and the second kind have the following representations in elementary
functions:

(18)

{ ug(t) = sin Ziafccost teG)
t e ’

ul(t) = cos w;tnléccost ,

where the property of u,(t) of being even and the property of u;(t) of being
odd become evident by means of the equality arccost+ arccos(—t) = w, valid
on the banks of the cut g as well. Putting (18) in (48) in [1, Theorem 3], we
obtain the first formula from (10) for the functions (x = fx(t) (k =0,1,2 ). The
continuous continuation of these functions on the banks of the cut g is realized
by the formulas (54)—(55) in [1] and the superpositions arccos(t £ i0) (t € g)
of the logarithmic function and the corresponding functions (16). Choosing, for
example, the functions v(t + i0) for ¢t € g; and v(t — i0) for t € go, i.e. the
functions (9), we obtain other two formulas from (10) for the boundary values
Ck* (k = 0,1,2). For transition of one bank of the cut g to another, we have
here the functional relations

arccos(t — 10) = — arccos(t + i0) (t € aq),
(19)
arccos(t + 10) = 27 — arccos(t — 0) (t € g0),

by means of which, conversely, we can immediately obtain the functional rela-
tions (54)—(55) in [1].
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This completes the proof of Theorem 2 and its Corollary.

Comparing (68) in [1, Theorem 6] with the first formula from (10), we
obtain the following representations in elementary functions for the other pair
of Gauss hypergeometric functions of the first and the second kind

{ uz(t) = cos 2regest

us(t) = sin aregest

(20) (t€G)

as well. The continuous continuation of the trigonometric functions from (18)
and (20) on the banks of the cut g is obtained immediately by the formulas (9)
and (19). In particular, continuing continuously the second formula from (20)
on the upper bank of the cut g; and applying (74) in [1], we obtain

arccos(t + 10)

(21) uz(t) = — sin 3

(t € gl).
Entering formula (21) in formula (75) in [1], we obtain the jumps of the branches
by the transition through the cut g in trigonometric functions.

With the help of the formula for cos of a triple angle, we can make a
verification of the roots (12) of the cubic equation (1). Conversely, by the for-
mula for cos of a triple angle we can obtain the formula (12) from the equations
(1)-(3) themselves, but without explicitly and exactly introduced function (11)
it would have had formal character only. In particular, when the cubic equation
(1) is with real coefficients and is algebraicly irreducible, i.e. for t € (—1,1)
and p < 0 (see [1, item 3.2] and Theorem 4 below), then the formula (12) is
known, and in the literature it is given as a substitute of the Cardano formula
for calculating the roots. From our theory it follows that the formula (12) is
already valid for an arbitrary complex ¢, i.e. for an arbitrary cubic equation
(1).

Theorem 2 gives the possibility of finding explicit algebraic representa-
tions of the branches and of the boundary values of the three-valued algebraic
function ¢ = f(t). This, in its turn, generates a convenient representation for ap-
plication of the roots (12) by real elementary functions of the arbitrary complex
parameter t. '

Theorem 3. Let the fundamental region G be mapped univalently by
the three reqular branches of the cubic radical

(22) ak(t) = kVt+ oVE-1 = a(t) expig(t);-—zkw (k=0,1,2),
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respectively, onto the angles 2kn /3 <argai(t) < (2k+1)r/3 (k =0,1,2), where
the upper bank of the cut g, and the lower bank of the cut go are mapped one-
to-one by means of the functions

ak(t+i0) = 4/t + /171 = a(t) expiZs™ (k=0,1,2;teq),
(23)

ap(t—i0) = 4{/t + /-1 =a(t) expi@"—gl-)1 (k=0,1,2;t€ go),

respectively, onto the interior banks of the cuts [exp i2km /3, 00 exp i2kw /3] and
[0, expi(2k+1)7/3] (k = 0,1,2) along the sides of these angles, where by a(t)
and a(t) the real functions

a(t) = +y/It + ovV2-1|,
(24)

€9, L=
aft) = arg(t+ oV#2—1) = arccos 3([t+1]| - [t=1]) (0 < a(t) < ™)

of the arbitrary complez argument t are denoted.

Then, the regular and univalent branches and the boundary values of
the three-valued algebraic function ( = f(t) of thye cubic equation (8) have
representations by elementary algebraic and real trigonometric functions

Ck fi(t) = ax®)+ iy =
(25) 0 (k=0,1,2;t€ G),
= 7(t) cos 1(5%2—'2 + 1p(t) sin g_(&;-?ﬂ

(26)

G = ak(t+i0)+m'}-ﬁ—oj=
. (k=0’1’2;tegl)1

= r(t)cos &% + ip(t)sin s

Cr ar(t—10) + a—(:_—_;aj =
(27) ' (k =0,1,2;te gO)a
= 7(t) cos ﬂ'%l)-’l + ip(t) sin @_b%l)g

where 7(t) and p(t) denote the real functions of the complez argument t:

1 1
(28) r(t) = a(t) + ;(T)’ p(t) = a(t) - a—(t_) (V).
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Corollary 1. Let for all finite t the set, constituted by the three values
of the cubic radical (22) by means of (24), be introduced for consideration.
Then the roots (12) of the cubic equation (1) are also equal to

% = o/—p/3 (a,,(t)+ ;&3) = (k=0,1,2t= — e p#0)

oV -p/3 (T(t) cos ﬂ%ﬁ + ip(t)sin a(t&azk-x) .

(29)

Corollary 2 (The Cardano formula). Let for all finite t, besides the set
of the condition of Corollary 1, the set of the reciprocal values

(30) bi(t) = #(t) =,V t- oV2-1 = b(t) expzﬂ() 2kn (k=0,1,2)

be introduced for consideration as well, where

(1) = Ay = + |t — oVEZ-1|,
(31)
t>1
B(t) = —a(t) = arg(t— oVti-1) (—1r < ﬂ(t) < 0).

Then the roots (29) of the cubic equation (1) are represented by means
of these two sets by the Cardano formula in the form

zr = o/ —P/3(ak(t)+bi(t)) = (k=0,1,2;t= —m;pﬂ)
(32)
0v/—p/3 [(ao(t)+bo(t)) cos 23* 2"" + 1 (ao(t) —bo(t)) sin 23- ""' .

Proof. The formula (25) follows from the first formula in (10) if we
express all cos by the Euler formula and apply the formula (8) for the cor-
responding arccos (for k = 0 the principal branch (25) is constituted by the
principal branch of the radical (22) ). Hence, each pair of radicals ax(t), 1/ak(t)
(k = 0,1,2) is a fundamental system of solutions of the resolvent differential
equation (5). The continuous continuation of the formulas (25) on the banks of
the cut g is realized by the formulas (54)—(55) in [1] for the left-hand side, and
for the right-hand side by the superpositions ax(t+1i0) (k =0,1,2;t € g) of the
_cubic radical (22) and the corresponding functions (16). Choosing, for example,
ar(t+10) for t € g, and ax(t—10) for t € go, i.e. the functions (23), we obtain
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the formulas (26)—(27). For transition of one bank of the cut g to another, the
functional relations

expi“—'g1 R te g,
(33)  ak(t+i0)ax(t—i0) = (k=0,1,2)

exp i2 2’;*'1", t€go,

are valid here, by means of which, conversely, we can obtain the functional
relations (54)—(55) in [1].

According to the noted characteristics of the mapping of the region G
by the function (15) and of the upper (lower) bank of the cut g; (go) by the
corresponding functions (16), for the modulus a(t) from (24) we have the fol-
lowing characteristic: a(t)>1 for 0 < arg(t—1) <, a(t) =1 for t € [-1,1]
and 0 < a(t)<1 for —7 < arg(t+1) <0, i.e. for the functions r(t) and p(t)
from (28) we have: r(t) > 2 and —oo < p(t) < +00, where r(t)>|p(t)|. Besides,
a(t) = oo (r(t) = 400, p(t) — 400 ) and a(t) — 0 (r(t) — 400, p(t) = —00)
for t — oo in an arbitrary direction in the upper half-plane 0 < arg(t—1)<m
and in the lower half-plane —7 < arg(t+1) <0, respectively.

Now, we shall find an explicit form of the argument a(t) of the Zukovski
inverse functlon (15). For that purpose we shall use the identities

[t4+1] 4 [t—1] = |t+ V21| + |t — oVI2-1],

(34) (1),
Rt = 1(jt+12-t-1]?),

and the ensuing from the Zukovski function (15) itself identity

(35) t= 1 ( (1) + (t)) (v(t) = |v(t)|e°®); t € G).

From (35) it follows that
1
36 Rt = (v t)| + ) cos a(t),
whence by means of (34) we find the formula
1
(37) cos a(t) = 5 (It+1] = |t=1]) . (t€qQ),

valid, according to (16), on the banks of the cut g as well. By the triangle
inequality it can be verified that the values of the right-hand side of (37) really do
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not go out of the segment [—1,1]. Taking into consideration that 0 < a(t) < =,
from (37) we obtain the formula for a(t) in (24).
This completes the proof of Theorem 3 and its Corollaries.

With the help of Theorem 3, from (54)—(55) in [1] we obtain the jumps
of the branches by the transition through the cut g in radicals:

{ f12(t4140) — f12(t—10) = iv/3p(t) (t € o1),
(38)

fo2(t+10) — fo2(t—i0) = Fiv3p(t)  (t € go)-

The connection between these relations is realized by the equality p(—t) = —p(t),
ensuing from (28). The comparison of (38) with [1, formulas (62) and (75)] yields
the corresponding equalities.

Comparing the formulas (48) and (68) from Theorems 3 and 6 in [1]
with formula (25) from Theorem 3, we obtain the following representations in
radicals of the considered pair of Gauss hypergeometric functions of the first
and the second kind:

up(t) = "’zl{ (a2(t) . ﬂle) i
) (t € G),

() = —} (a0 + ).

ug(*t) = +3 (ao,l(t) + ﬁm) )
(40) (t € G),

ug(£t) = % (ao,l(t) - #{3) )

where the upper (lower) signs correspond to the first (second) indices. The
continuous continuation of these formulas on the banks of the cut g is obtained
immediately by the formulas (23) and (33).

Analogously, from the system obtained by the comparison of the formu-
las (76)—(77) from Theorem 7 in [1] with the formula (25) from Theorem 3,
representations of the functions (79) in [1, Theorem 7] in the upper and lower
t-plane in radicals

kv 2tug(t) = ax(t), T%%(t} = ﬁ?ﬁ (k=0,1,2;0<argt<m),
(41)
€k V/2tuy(t) = ﬁ;;, k—kly;us(t) = ax(t) (k=0,1,2;-r<argt<0),

€

follow. From (41) the identity (82) in [1] for 0< | argt| <7 immediately follows,
whence, by means of the analytic continuation we establish that it is true in
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the domain ¢ ¢ [—1,1] as well, to which we can also add the boundary points
t==+1.
Remark 1. From the formulas for cos and sin of a triple angle, the
identities
cosa(t) = 4 [[i_, cos ‘—’—(5%’—' )
(42) (Vt)
sina(t) = —4 [[i_, sin 1(31;'2—'”

follow. With their help we establish that the argument a(t) (its boundary values
included) of the Zukovski inverse function (15) is connencted with the real and
imaginery parts of the roots (x = &x(t)+ink(t) (k = 0,1,2) of the cubic equation
(3), taken from the factor in the parentheses of the second formula in (29), by
the formulas

cosa(t) = s o) (DEa(t) (V1),
(43)
sina(t) = — s no(m(m(t) (¢ ¢ [-1,1]).

Remark 2. The second formula (37) obtained for the argument a(t) of
the Zukovski inverse function (15) gives us a possibility of writing an explicit
form for the inverse trigonometric function (8) (respectively, (11) ). More gener-
ally, for the two basic regular and univalent branches (arccost)* of the classical
many-valued function Arccost we obtain the explicit formula

(arccost)* = 1 In(t+ ov22-1) =
(0 {

= + arccos 3(|t+1]| — |t—1|) — i In|t £ V21|

where the values of the real arccos on the right-hand side lie on the segment
[0,7]. Formula (44) is valid on the lower bank of the cut go and the upper
bank of the cut g; as well (it is also valid on the opposite banks of these cuts
if the signs + in front of the radicals are replaced with the signs F). An
arbitrary regular and univalent branch of the function ( Arccost)* is obtained
if we add 2vr (v = 0,41,+2,...) to the corresponding basic branch (44). The
values of ( Arccost)* lie on the bands 2vm < R( Arccost)t < (2v + 1)7 and
(2v — 1)7 <R( Arccost)™ <2vm (v =0,+1,+2,...), respectively.

Remark 3. The formulas (25)—(27) show that they can be obtained in
an artificial way from the cubic equation (3) setting ( = 6e'¥ +1 /6€'?, where
the modulus § and the argument ¢ have to be determined. Thus, we obtain
the quadratic equation u + (1/u) — 2t = 0, where u = §3¢3“. Comparing this
expression, in which we choose § = a(t), with the corresponding root, we obtain
ek = (a(t)+2kr)/3 (k=0,1,2).

(t € G),
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Remark 4. The inverse route from the Cardano formula (32) to The-
orem 3 in [1] is also possible. In order to do this, ¢ = cos7 should be set in
(32) and, further, each stage should be passed in the already explained man-
ner. By the inverse route we shall obtain Theorem 3 in [1] independently of
the basic Theorem 1 in [1], being its corollary for n = 3. Of course, the in-
verse approach has a local character since it refers to the cubic equation, whose -
algebraic solution (the Cardano formula) is known to us.

As an application of the second formula from (29), we shall calculate the
magnitudes a(t), a(t), r(t) and p(t) by formulas (24) and (28) in the case when
the coefficients p # 0 and g of the cubic equation (1) are real. For an arbitrary
real ¢ it is possible that p<0 or p>0, so the parameter ¢, calculated by (2) (or
by (29) ) is a real or a pure imaginary number. If p<0, for all t € [-1,1],i.e. for
—2(4+v/—p/3)® < ¢ £ 2( 4++/—p/3)3, we have a(t) = arccost, a(t) = 1, r(t) = 2
and p(t) = 0, by which the second formula from (29) is reduced to the formula
(12). fp<0,forallt > 1 (¢ < —2(4/-p/3)*)ort <1 (¢ 2(+/-p/3)%)
we have a(t) = 0 and a(t) = =, respectively, while the modulus a(t) is given
immediately by (24). If p > 0, for all ¢t € (—i00,+i00) (—00 < ¢ < +00) we
have a(t) = 7/2, while the modulus a(t) is determined by (24). In general,
the second formula from (29) as a new formula for the numerical solution of
an arbitrary cubic equation (1) generalizes in real functions of the arbitrary
complex parameter ¢ the classical real formula (12) for the ”irreducible case”
te(-1,1).

Besides, from the comparison of Theorem 3 and Corollary 1 with Corol-
lary 2 it is obvious that our formulas (25)-(27) and (29) are more suitable for
investigations than the Cardano formula (32). Thus, for example, the second
formula from (29) yields a possibility of building completely the geometry of the
roots of the cubic equation (1) which has not been made until now.

4. Geometry of the roots

The following theorem refers to the general position of the roots in the
z-plane:

Theorem 4. For an arbitrary ﬁrﬁte t the three roots z (k =0,1,2)
of the cubic equation (1) cannot lie on one straight line, ezcept in the ezceptional
case for t €[—1, 1] when these roots lie on the segment z € [-2 o1/ —p/3,2 0/ —p/3].

Proof. It is sufficient to prove the theorem for the cubic equation (3).
Taking its roots (x (k = 0,1,2) from the expressions in the parentheses of the



144 Pavel G. Todorov

second formula in (29), for their differences we obtain
Ck=Cr4r = (k=0,1,2;(3=C(o)

(45)
(-1)kv3 (T(t) sin ﬂiﬁaﬂ)l — ip(t) cos agt}jak-—llw)

Let us now constitute the affine ratio of the three roots and investigate
its reality. For the imaginary part we obtain

-G V3 r(t)p(t)
46) 9((2,00,1) = SE—p2 =~ '
(46) ((2,¢0,C1) Ci—Co 2 r2(t)sin? 2T 4 p2(¢) cos? 2T

For finite ¢ the right-hand side can become zero only for p(t) = 0, i.e. for
a(t) = 1, according to (28) and (24), which implies |v(t)| = 1, according to

t=F1
(15), where Sv(t) g 0. But the original of the upper unit half-circle by the
mapping (15) is the segment ¢ € [—1, 1], in which case the roots {x (k=0,1,2)
are real and lie on the segment ( € [-2,2]. '

This completes the proof of Theorem 4.

According to the classical Van der Berg theorem (see, for example, Mar-
den’s monograph [3], p.9, Theorem (4.1) and pp. 12-13 for a detailed bib-
liography concerning the history of this theorem), the roots of the derivative
equation of the cubic equation (1) lie at the foci of the ellipse, inscribed in the
triangle, constructed by the three roots zx (k = 0,1,2) of the given equation,
and touching the middles of its sides. The Van der Berg theorem does not give
the conditions under which the triangle 29z 2, is not degenerate and the explicit
equation of the ellipse. According to our Theorem 4, the Van der Berg theorem
has non-degenerate meaning if ¢t ¢ [—1,1] only. Now we shall find the equation
of the ellipse as well and we shall also prove the Van der Berg theorem itself by a
new and simple method with the help of the formula (29). In addition, the for-
mula (29) yields the possibility of finding the equation of the circle, determined
by the three roots z; (k = 0,1,2), and to establish the new fact that these roots
lie on another ellipse with a special position. Geometrically this means that the
roots of the cubic equation (1) for t ¢ [—1,1] are points of intersection of two

completely determined curves of second degree. Let us formulate all these facts
exactly:
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Theorem 5. For each finite t ¢ [—1,1] the non-degenerate triangle
202122, where 2y, 21, 2 are the roots of the cubic equation (1), is inscribed in
the circle

(47) |z = ¢ ov/=273| = R/IPI/3
(c“= cosa(t)  sina(t) o 24 |t2—1|)

r@ ey T Tr(@)le()]

and also in the ellipse

(48) |2+ 20V/=p73| + |2 = 20v/=p/3| = 20(t) +V/IPI/3

with a large half-azis r(t) +\/|p|/3, a small half-azis |p(t)|+/|p|/3 and foci
F20+4/—p/3 and is circumscribed around the similar and identically-situated

ellipse

(49) |2+ oV/=p73| + |2 ov/=p/3| = r(t) +/IpI/3
with a large half-azis (1/2)r(t) ++/|pl/3, a small half-azis (1/2)|p(t)| ++/|pl/3,

foci at the points F o\/—p/3, which are the roots of the derivative equation of
the given equation, touching the middles of its sides.

Proof. It is sufficient to prove the theorem for the roots (x (k=0,1,2)
of the cubic equation (3). According to Theorem 4 for t ¢ [—1,1], the roots (i
do not lie on a straight line and they determine a certain circle |( — (*| = R. Its
center ¢* and radius R are determined by the system (Cx — ¢*)(Cx — C ) = R?
(k =0,1,2), where (x are taken from the second formula in (29). From here
we can obtain a system of two equations with respect to (* and ( , whence, by
means of (45), we come to the expression for (* and by this for R in (47) as well.
By means of (43) the formula obtained for (* can be immediately expressed by
the real and imaginary parts of the roots (x = & + imx (kK =0,1,2).

Further, by the second formula in (29) it follows immediately that the
roots (x = &k + inx (kK = 0,1,2) lie on the ellipse from the (-plane

£? n?

(50) W + pz(t) =

with half-axes r(t) and |p(t)| and foci F2, which in the z-plane has the complex
equation (48), according to the first transformation from (2).

Now, we shall give a new and simple proof of the Van der Berg theorem
for the non-degenerate case and we shall also find explicitly the ellipse (49).
From the relation (o + (1 + {2 = 0 it follows that the middles of the sides of the
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triangle (o(1{2 opposite the corresponding vertices are —(i/2 = —&;/2 — inx/2
(k=10,1,2), and, analogously, in consequence of the second formula in (29), lie

on the ellipse
2

£ 7

51 =1

(51) %rz(t) + %pz(t)

with half-axes (1/2)r(t) and (1/2)|p(t)| and foci F1, which in the z-plane is
given by (49). Now it can be verified that the pair of points (;,2, (20 and
(o, lie on the tangents of the ellipse (51) at the points —(x/2 (k = 0,1,2),
respectively, i.e. the ellipse (51) is inscribed in the triangle (o(1{2. The points
F1 at which its foci lie are the roots of the derivative equation of the equation

(3)-

This completes the proof of Theorem 5.

In Cartesian coordinates, the equation of the circle (47) can be written
immediately. In particular, when the cubic equation (1) is with real coefficients
P # 0 and g for which ¢t ¢ [—1,1] (see the corresponding cases in the end of
item 3), the center of the circle (47) lies on the real axis, the origin excluded.

In Cartesian coordinates, the central equations of the homothetic ellipses
(48) and (49) are (p=p1 +ip2 # 0; t ¢ [-1,1]; 2 = z+iy)

(52) [Pl (r?(1)=2) + 2p1 ]2 + 4pazy +

+ Il (20-2) - 20 - Eor0p) = o,

(53) [Ipl (*2(t)=2) + 2p1 |22 + 4pazy +

+ -2 -2m 0 - B = o,

with vertices +r(t) o0/—p/3, Zilp(t)l 0n/—p/3 and £(1/2)r(t) 0/—p/3,
+(i/2) |p(t)| 0n/—p/3, respectively. In particular, for a real p # 0 (t ¢ [—-1,1])
the ellipses (52) and (53) have central axial (canonical) equations

g2 y? 22 y?
54 + =1 (p<0), + =1 (p>0),
(54) llyay) © lelpa(e) (p<0) E02(t)  §r(1) (

and

2 2

(55) ——— + —~ .
Blraey ~ IElp2(e)

2

d y
=1 (p<0), + =1 (p>0)
#<O o * F0 ’

respectively.
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Theorem 5 yields a possibility of making further investigations. That
is why we shall again use the (-plane which is immediately transformed into
2-plane by a rotation and a homothety with respect to the origin, according to
the first formula from (2). Comparing the equations of the tangents of the circle
| = ¢*| = R and the ellipse (50) at its points of intersection (x (k =0,1,2),
where (; are taken from (29), we shall be convinced that the circle touches
the ellipse in the following three cases only: for t € (1,+00) in the positive
root (o = 7(t) € (2,400) (a(t) = 0), for t € (—o00,—1) in the negative root
(1 = —7(t) € (—00,—-2) (a(t) = ), and for t € (—ic0,0)U (0, +i00) in the pure
imaginary root {3 = —ip(t) € (+i00,0) U (0, —ioo) (a(t) = 7/2). In each of the
three cases the other two points of intersection correspond to the complex roots.

In each of the cases t € (1,+00) and t € (—o0o0,—1) the roots {y (k =
0,1,2) are also the points of intersection of the circle | — ¢*| = R, the ellipse
(50) and their locus: the left branch H, of the hyperbola (53) in [1] and the
part of its real axis (2,+00) and the right branch Ho and the part (—oo0, —2),
respectively. As homofocal curves of second degree, the intersection between
the ellipses (50) and the hyperbola (53) in [1] is orthogonal. By means of the
first transformation from (2), we find that in the z-plane the hyperbola (53) in
[1] has a central equation (p = py+ips # 0; 2 = z+1y)

(56) (|2l = 2p1)z? — 4pazy + (Ip| + 2p1)y* = IpI* = 0

with vertices £ oy/—p/3 and the corresponding foci +20+/—p/3. The roots (29)
of the cubic equation (1) lie on the hyperbola (56) and its real axis if the coeffi-
cients p # 0 and g are such that the parameter t is real (according to Theorem
4, the roots for t € [—1, 1] lie on the segment z € [-20y/—p/3,20+/—p/3], deter-
mined by the foci). In particular, for real coefficients p>0 and g (—co<t<+00)
the roots (29) lie on the hyperbola (and its imaginary axis) with canonical e-
quation ‘

(57)

x2 y?
lpl/3  lpl —
If t € (—i00,+100), then we find the locus of the roots of the cubic
equation (3) by the method by which we obtained the hyperbola (53) in [1].
Setting t = iu, u € (—00, +00),let { = iv, v € (—00,+00) be the pure imaginary
root of this equation. Separating this root, we obtain the other two roots ( =
+£ + in = +1/3(v2+4) /2 — iv/2, whence we find the hyperbola

1.

(58) -——1]2=]_

with vertices +1/3 and foci +2. Hence, in the case t € (—ico,0) U (0, +i00)
the roots (; (k = 0,1,2) are also points of intersection of the locus found (the
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hyperbola (58) and its imaginary axis) with the circle |( — ¢(*| = R and the
homofocal ellipse (50), the intersection with which is orthogonal. By means of

the first transformation from (2), we find that in the 2-plane the hyperbola (58)
has a central equation

(59) (Ipl + 2p1)z® + 4pazy + (|p| — 2p1)y* + |p|*> = 0

with vertices +/—p and corresponding foci +2¢/—p/3. The roots (29) of
the cubic equation (1) lie on the hyperbola (59) and its imaginary axis if the
coefficients p # 0 and ¢ are such that the parameter ¢ is a pure imaginary
number. In particular, for real coefficients p<0 and ¢ (t € (—i00,+i00)) the
roots (29) lie on the hyperbola (and its real axis) with canonical equation

60 v _z
- p p/3
In the general case, the positions of the roots (x (kK = 0,1,2)on the ellipse
(50) are determined by means of the circle |{.— ¢*| = R in view of which it is
appropriate to call this circle determining. For finite ¢t its center is always
different from the origin. From the relations a(—t) = 7 — a(t), r(—t) = r(t) and
p(=t) = —p(t) (a(—t) = 1/a(t)) it follows that for values t and —t, the centers of
two such determining circles are symmetric with respect to the origin and their
radii are equal to each other. The fourth point of intersection (3 = &3 + 73
of the determining circle |( — (*| = R (( = € + in) and the ellipse (50) in
the general case is obtained by the joint solution of their equations. Thus, we
obtain for £ and 7 the corresponding equations of fourth degree which must be
satisfied by the real and imaginary parts of the roots {x (k = 0,1,2), taken from
(29), and of the point (3. In these equations the coefficients of £* and & are
4 and —47(t) cos a(t), respectively, and of n* and 7> are 4 and 4p(t) sin (2),
respectively . Taking into consideration that (o + (1 + {2 = 0, we obtain

(61) (3 = 7(t) cosa(t) — ip(t) sina(t) (t¢[-1,1]).

By means of (43) the obtained formula can be immediately expressed by the
real and imaginary parts of the roots {x = &k +inx (k= 0,1,2). From (61) and
(47) it follows that the product (*(3 lies on the permanent straight line ¢ = 1.
For the considered values of ¢ the point (3 is always different from the
origin. Transformating it by the first transformation in (2), we obtain the point
23 = (30y/—p/3. The position of z3 on the determining circle (47) in the z-plane
with respect to the roots (29) is determined by the values of the cross-ratios

2

Za!tM

o (¢ -11)]),

z3—20  23—20 _ |22—20|? sin
23—z 23— |:.f2—-:f,1|2sin2—"’5(11

(62) (Z01 214 22, 23) =
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o 2a(t
21—23  23—22 |21 — 22|? sin
(63) (22 20,21423) = : = L
20,21, 23) 21—20  23—20 |zl—20|2sin2i%ﬂ

(t¢[-1,1])

evidently invariant to the cross-ratios ({o,(1,(2,¢3) and ({2, Co,¢1,(3), respec-
tively. For t € (1,+00) (a(t) = 0),t € (—o00,-1) (aft) = 7) and t €
(=400,0) U (0, +i00) (a(t) = 7/2) the values (62) and (63) are oo, 0, 1 and
0, 1, oo or for these t we shall have 23 = 29, z3 = 2; and 23 = 23, respectively.
These unique cases of coincidence corresponding to tangency of the determining
circle (47) and the ellipse (48) are already obtained by us above in another way.
Except these special values of ¢, for all the remaining finite values of ¢t ¢ [—1,1]
(hence 0 < a(t) < 7, a(t) # 7/2) we have the following position of the points
2 (k=0,1,2,3) on the determining circle (47): the cross-ratio (62) is positive
and different from 1 or the points 23 and 2; are situated on one side of the
straight line 292;; the cross-ratio (63) is positive and different from 1 for t<0
(r/2<a(t)< ) or the points 23 and 2z; lie on one side of the straight line 2329
(23 is between z; and 2; ) and negative for Rt >0 (0 < a(t)<7/2) or the points
23 and z; lie on both sides of the straight line 2,29 (23 is between 2; and zp).

Hence, for t ¢ [—1,1] each cubic equation (1) with roots zx (k=10,1,2)
has an associated to it corresponding algebraic equation of fourth degree with
roots 2 (k = 0,1,2,3), lying on the determining circle (47). Conversely, sep-
arating from the cubic equation (1) one or two roots, we obtain corresponding
algebraic equations of second and first degree. Thus for ¢t ¢ [—1,1] we obtain
the class of all algebraic equations from the first to the fourth degree, the roots
of which are points of intersection of the two curves of second degree (47) and
(48).

Finally, we shall indicate new metric relations for the roots z; (k =
0,1,2) of the cubic equation (1). By the square of the moduli of the roots (29),
we obtain the sharp estimates

(64) VADFIVIPTB < |24l < r)VIRIB (1),

where the equality is attatined: on the left-hand side for t < —1 by |2o| and for
t > 1 by |z|, and on the right-hand side for ¢t > 1 by |20| and for t < —1 by
|z1|, only, and

(65) le(MIVIpl/3 < |22 < VP2()+1/]pl/3 (),

where we have equality: on the left-hand side for ¢t € (—i00, +100), and on the
right-hand side for t < —1 and ¢t > 1 only.

Comparing the differences of the square of the moduli of the differences
(45) and taking into consideration the first formula from (2), we find sharp
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inequalities between the distances of the roots (29):*

t<—1 £>1
(66) 20 —21] 2 22—z, |z21—20] > |lzz—2|, (V).

From here, in particular, for ¢t ¢ [—1,1] it follows that the largest side of the
non-degenerate triangle zpz;z2 by the roots (29) of the cubic equation (1) is the
side zpz;. By the cosine theorem it follows that the angle opposite the side z9z;
can be acute, right, or obtuse.

For the roots (29) of the cubic equation (1) we have the equality
(67) l20|* + |21]? + |22|* = |p| (r*(1)-2) (V1)
and the following from (45) and from the first formula in (2) equality
(68) |20 — 211> + |21 — 22| + |22 — 20|* = 3|p| (r*(1)-2) (V1),

the right-hand sides of which, in particular, for ¢t € [-1,1] (r(t) = 2) are equal
to 2|p| and 6|p|, respectively.

The area of the triangle {o(1{2 from the roots (29) of the cubic equation
(3) is calculated by means of the corresponding determinant, constructed by
their real and imaginary parts. Multiplying this area by the square of the
modulus of the homothety expressed by the first formula in (2), we obtain the
area S of the triangle 292,2, from the roots (29) of the cubic equation (1):

V3
(69) s = B30y g1,
The formula we found is valid for t € [-1,1] (p(t) = 0), as well, when the
triangle 202, 2, is degenerated in the segment, considering its area equal to zero.
Our geometry in item 4 is different from Fell’s geometry in [4].

5. Tabulation of the roots of the irreducible cubic equation

We shall show how this can be made with the help of computers. For
P<0 and —1<t<1 the cubic equation (1) is irreducible. Considering more
generally —1 <t < 1, let us write its three real roots in the form

(70)  z = fu(t) +v/—P/3 (k=o,1,2;t=-5a/ﬁp=m5;p<o>,
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where (; = fk(t) (k = 0,1,2) are the three real roots of the irreducible cubic
equation (3). In consequence from (47) in [1], in (70) we can restrict ourselves
to0 <t <1 (—=2(4/-p/3)% < ¢ <0). By means of the function (4), as
we have done in the beginning of the item 3.2 in [1], we establish that for
0 <t <1 the functions fo1(t) increase from fo(0) = V3 to fo(1) = 2 and from
f1(0) = —/3 to fi(1) = —1, respectively, and the function f(t) decreases from
f2(0) = 0 to fo(1) = —1. Hence, the functions (x = fk(t) (k = 0,1,2), being
bounded for 0 < t < 1, can be tabulated by any of the theorems proved for their :
representation. The formulas (68) from Theorem 6 in [1] prove to be the most
convenient for this purpose. For 0 < t < 1 the hypergeometric functions in (68)
in [1] can be replaced by the corresponding quickly convergent hypergeometric
series (65) and (71) in [1] since 0 < (1—t)/2 < 1/2. Let us denote the coefficients
in these series by

- (@@, B ®n

am = by = -&mledm o, 0.1,2,..).
()mm! (%)mm! ( )

They tend monotonously to zero so that the ratios |am+1/am| and bpmi1/bm
monotonously increase and tend to 1. This circumstance yields a possibility of
finding easily good estimates for the errors

Rmy1 (3555 = [ E0lmn e (3] < -5 (5™,
(72) R (88 35) = Zilmn (7)) < 2 (5™

(m=0,1,2,...;0 < t<1),

where the maxima on the right-hand sides with respect to ¢ are attained for
t = 0 and are equal to —a,,/2™ and b,/2™ (m = 0,1,2,...), respectively.
Taking in view the factors in front of the series in (68) in [1, Theorem 6], the
first maximum is multiplied by 2, and the second one is replaced by a smaller
one. Of course, the greatest accuracy is obtained if for a given ¢t (0<t<1) the
errors are calculated from (72) and the absolute values of the factors in (68) in
[1] are taken into consideration.

Hence, there emerges the possibility of constituting tables for the func-
tions (68) in [1, Theorem 6] for 0 < ¢t < 1. They will give the roots {x = fi(t)
(k =0,1,2) of the irreducible cubic equation (3) so many correct decimal digits
as are taken in the increment of ¢. If for an increment of ¢, 0.0001 or 0.00001,
etc., are taken, we shall have tables with 4 or 5 decimal digits, etc. These ta-
bles will give the roots (70) of the irreducible cubic equation (1), as well, an
exactness to the factor ;y/—p/3. This result is of great significance for practice
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and completely satisfies it. For greater accuracy, the table values multiplied by
+v/—p/3 can be used as initial approximations for iterative processes.

In the other two cases, when the cubic equation (1) is with real coeffi-
cients p # 0 and g, the functions representing the roots of the reduced cubic
equation (3) are unbounded. In the case p>0 or t € (—i00, +i00) the roots are
represented again by the formula (70), but for values of p and t considered now
and for the principal values of the radical. It follows from (47) in [1] that we
can restrict ourselves for t € [0, +i00) (—o0o<g < 0). For any t € [0, +i00) the
functions fx(¢) (k = 0,1,2) in (70) can be represented by the hypergeometric
series according to that of the Theorems 3, 5, 6, or 7 in [1] for which the moduli
of the arguments of the corresponding hypergeometric functions are not larger
than 1. If the moduli of the arguments are near 1, an improvement of the con-
vergence of the series is attained by means of the basic functional relations of
the Gauss hypergeometric function [5] as we already noted in the end of item
3.4in [1]. In the case p< 0 ort < —1 and t > 1 we can restrict ourselves
fort > 1 (—oo<q < —2(4/-p/3)?) according to (47) in [1]. The roots are
represented by replacing f;(t) in (70) by ¢} (k =0,1,2). Herewith the results
in [1], namely: Theorem 4, Theorem 6 (the corresponding formulas from (69)),
or Theorem 7 (the formulas (76) for argt = 0) are applied analogously. Hence,
in these two cases, obtaining corresponding quickly convergent hypergeometric
series, we can constitute tables for the roots in such local sections of ¢ which
are encountered and have significance in practice.

From the results obtained in this item it follows that the ”irreducible
case”of the cubic equation (1) or (3) is represented as the most favorable and
suitable for tabulating the roots as well.
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