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In this paper, it is shown that there are various ways to charecterize separation axioms
in the category of topological spaces in terms of the concepts which make sense in any topo-
logical category, e.g. in terms of initial lifts, final lifts, and discreteness. These generalizations
include two notions of Tp, one notion of 73, and four notions of each of 7%, T3, and Tj.

1. Introduction.

The notion of topological space has been extended in various ways to
include convergence spaces, limit spaces, bornological spaces, uniform spaces,
nearness spaces, and preordered spaces by D. C. Kent [7], L. D. Nel [10], F.
Schwarz [12], O. Wyler [13], among others, to the notion of a topological
category. The more general notions of topological functors and topological cat-
egory were introduced by H. Herrlich [3] and represents a generalization of
the ideas of induced and coinduced topologies in terms of initial and final lifts.
If one wishes to study the extent to which theorems in general topology can
be formulated and proved in the more general setting of a topological category
it is necessary to first reformulate certain basic concepts which make sense in
any topological category e.g. in terms of initial and final lifts, discreteness, and
indiscreteness. Some basic concepts in general topology are the notions of sepa-
ration properties (7o, Ty, T3, T3,T4) which appear in many important theorems
such as the Urysohn Metrization theorem, the Urysohn lemma, the Tietze ex-
tension theorem, among others. In view of this, it is useful to be able to extend
these notions to arbitrary topological categories.

Broadly speaking, these separation properties involve *Separating’ certain
kinds of sets (points and closed sets) from one another by (disjoint) open sets.
In order to generalize these notions to arbitrary topological categories, we need
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to express, as mentioned above, each of these notions in terms of initial lifts,
final lifts, and discreteness. We introduce some notions such as the principal
axis map, the skewed axis map, the wedge product, and the fold map which are
needed to define the separation properties.

We first define separation properties at a point, pi.e. locally, then we gen-
eralize this point to free definitions using the generic element, [5] p.39, method
of topos theory for an arbitrary topological category over sets. One reason for
doing this is that, in general objects in a topos may not have points, however
they always have a generic point. The other reason is the notion of closedness
on arbitrary topological categories is defined in terms of Tp and T at a point,
p. 335 [1].

In general topology, the separation properties Ty and 7 are hardly used
in general. However, we shall see in this paper that they become very important
because they are used to define Ty, T3, and T4. There is also one other important
separation axiom, namely Pre T (which is not used in general topology) that
has already appeared in [4] as a generalized Hausdorff condition arising in the
study of geometric realization functors that preserve finits limits.

The main purpose of this paper is to charecterize the separation proper-
ties in this category of topological spaces in terms of the concepts which make
sense in arbitrary topological categories.

Let X be a set and p a point in X. Let X v, X be the wedge product of
X with itself, i.e. two distinct copies of X identified at the point p. A point z
in X Vp X will be denoted by z(z2) if z is in the first (resp. second) component
of X V, X. Let X2 = X x X be the cartesian product of X with itself and,
X2V X? be two distinct copies of X? identified along the diagonal. A point in
X2V X? will be denoted by (z,y)1((z,y)2) if (z,y) is in the first (resp. second)
component of X? VA X2. Clearly (z,y)1 = (z,y): iff z = y.

1.1. Definitions.

The principal p-axis map, Ap : XV, X — X?is defined by A,(z1) = (,p)

and Ap(z2) = (p,z). The skewed p-axis map, S, : XV,X — X? is defined by

Sp(z1) = (z,z) and S,,(zg) = (p,z). The fold ma.p atp, V, : XV, X - X is
given by V,(z;) =z for i = 1,2.

1.2. Example

If X is the set of real numbers and p = 0, then the image of the principal
p-axis map is just the union of the z— and y—axes, and the image of the skewed
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p-axis map is the union of the diagonal, i.e. the line y = z, and the y-axis.
This example motivates the terminology in 1.1. Hence, in this way we
may view the image of A, and S, as ’axes’ in X? with origin p.

1.3. Definitions

The principal axis map A : X? Vg X2 — X3 is given by A(z,y)1 =
(z,y,z) and A(z,y)2 = (z,z,y). The skewed axis map S : X? vy X? — X3
is given by S(z,y)1 = (z,y,y) and S(z,y)2 = (z,z,y), and the fold map, V :
X%?Vy X? - X?2is given by V(z,y); = (z,y) fori = 1,2.

Let X be a topological space and p be a point in X.

1.4. Definitions

1. X is said to be Ty at p iff for any point ¢ # p, there exists a neigh-
borhood N, of p not containing g or there exists a neighborhood N, of ¢ not
containing p.

2. X is said to be T; at p iff for any point ¢ # p, there exist neighborhoods
N, and N, of p and g, respectively such that p ¢ N, and ¢ 3 Np.

3. X is said to be PreT, at p iff for each ¢ # p, if the set {p,q} is
not indiscrete, then there exist disjoint neighborhoods N, and N, of p and ¢,
respectively.

4. X is said to be T, at p iff for each ¢ # p, there exist disjoint neigh-
borhoods N, and N, of p and g, respectively.

5. X is said to be T3 at p iff X is T; at p and X/F is PreT; at p for all
nonempty closed subsets, F' of X missing p, where X/F is the quotient space
that is induced from the quotient map ¢ : X — X/F identifying F to a point,
*.

6. X is said to be Ty at p iff X is 7} at p and X/F is T3 at % for all
nonempty closed subsets, F' of X containing p, where the point x defined above.

Let X be a topological space and p € X.

1.5.Theorem. 1. X is Ty at p iff the induced topology on X V, X via
{A; : XVpX - X?and V, : X V, X — DX} is a discrete topological space,
where DX is X equipped with the discrete topology.

2. X is Ty at p iff the induced topology on X V, X from X? and DX by
Sy and V,, respectively, is discrete.

3. X is PreT; at p iff the induced topologies on X V, X from X? by A,
and S, agree. <
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4. X 18Ty at p iff X is To and PreT; at p.

5. X 18T;,1=0,1,2,3,4iff X isT; at p forallp in X,1=10,1,2,3,4.

Proof 1. Suppose X is Tp at p. It is sufficient to show that each one-
point set is open in X Vv, X. If ¢ # p, then there exists a neigborhood N, of p
not containing q or there exists a neighborhood N, of ¢ not containing p. If the
first case (resp. the second case) happens, then let U = {q¢} and W = N, x X
(resp. W = X x N,) which are open in DX and in X?, respectively.

Clearly V3 l(U) NA;Y (W) = {q2} (tesp. {m1}). H ¢ = p, then let
U = {p} and W= x? whnch are open in DX and X2, respectively. Clearly

V1 (U)N A (W) = {p}. Hence the induced topology on X V, X from X? and
DX via A, a.nd Vp, respectively is discrete.

Conversely, suppose the induced topology is discrete. We show that X
is To at p, i.e by 1.4, for each ¢ # p and each neighborhood N, of ¢ that
contains p, there exists a neighborhood N, of p that does not contain g. Since
the induced topology is discrete {¢1} = V l({q})f‘lA (W) for some W open in
X2, and consequently there exist open sets N, and V in X such that Ap(q1) =
(q,p)GN xV Cc W. If gis not in V, thenlet N, =V. If gis in V, then
(p,q) € Ny x V C W since all neighborhood N, of g contains p. However,
{@1,92} = V;'({g}) N A;}(W), a contradiction. Hence ¢ ¢ V. This completes
the proof.

2. Suppose X is T; at pi.e. by 1.4 for each q # p, each has a neighborhood
not conta.ining the other. Note that {g1} = V;'({¢}) N S, (N, x Ny) and
{a2} = V;1({q}) N S;1(Np x N,), where N, a.nd N, are open in X w1th qis
not in N, "and pis not in N,. Note also {p} = l{p} N S;1(X?). Hence the
induced topology is discrete.

Conversely, suppose the condition holds, and let ¢ # p. {q1} = 1({q})ﬁ

l(W) for some W open in X2. In particular, S,(q:1) = (¢,9) € W and con-
sequently there exists a neighborhood N, of ¢ such that (¢,¢9) € Ny x N, C W.
Clea.rly, p is not in N, otherwise (p, q) € W and consequently {ql,qg} =

Vv, l({¢}) N S;H(W), a contra.dlctlon Similiarly {g2} = V;'({q}) n §;1 (W)
for some open W in X2 and consequently there exists a nelghborhood N and
N, of q and p, respectively such that (p,q) € N, x N, C W. Clearly, g is not in
Np. Hence X is T at p.

3. To prove the part (3) we need the following lemma ([9], p.80):

1.6. Lemma. Let B and B’ be bases for the topologies € and ¢,
respectively, on X. Then the following are equivalent. a) £ C £'. b) For each z
in X and each basis element B in B containing z, there is a basis element B’
in B’ such that z € B' C B.

We now proceed to prove part (3) of 1.5.
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Suppose X is PreT; at p. We show that A~1(£) = S;1(£) where £ is a
product topology on X2. To show A~'(¢) C S5,(£), we use Lepims 1.6. ket
U be any basis element of A;!(£) and g € U. It follows that U = A;1(W) for
some basis element W of £. A,(q) (g,p) or (p,q). Suppose A,(q) = (p, 9 EW
and consequently there exist neighborhoods N, and N, of p and g, respectively,
and W = N, x N,. If {p,q} is indiscrete, then let Wy = W and clearly ¢ =

a2 € S;Y(W) c A;Y(W). If {p,q} is not indiscrete, then there exist disjoint
nexghborhoods N, and N, of p and g, respectively. Let W, = (N,NN,) X (NgN
N;) and clearly ¢ = ¢2 € S 1(Wh) € A;1(W). Suppose A,(q) = (g, p) eEW =
N X Np. If {p,q} is mdlscrete, then clea.rly g=q € §;' (W) C AZ'(W). If
{p, q} is not indiscrete, then there exist disjoint nelgborhoods N, and N ' of p and
g, respectively (since X is PreT; at p). Let Wy = (NgNNg)x (N, nN <) a.nd clearly
g =q € S;'(W1). We now show that S; (W) C A l(W) Let r € 5,1 (Wh),
then .S',,(r) must be (7,r) (since p ¢ N/ ) and consequently (r,p) € W Hence
r € A;1(W). Therefore A;'(€) C S, l(f)

We next show tha.t S;1(€) € A 1(€). Again we use Lemma 1.6. Let
U = §;1(W) be a basis clement of Sy 1(f) where W is a basis element of the
product topology £ and let ¢ be in U. Sp(q) (g,9) or (p,9).

Suppose S,(¢) = (¢,9). We can take W = N, x N,, where N, is a
neighborhood of ¢. If {p,q} is indiscrete, then clearly A;'(W) c S;1(W). If
{p, q} is not indiscrete , then there exist disjoint nelghborhoods N, and Ng of
p and g, respectively. Let W, = (N;N N}) x N, and clearly g €A l(W)
Ifre A“(Wl), then Ap,(r) must be (r, p) since p ¢ Ngq' and consequently
A‘l(Wl) C S;1(W).

Suppose Sp(q) = (p,q). We can take W = N, x Ng,where N, is a
neighborhood of ¢, If {p, ¢} is indiscrete, then clearly A;'(W) Cc S;}(W). If
(P, q) is not indiscrete, then there exist disjoint neighborhoods N, and N, of p
and g, respectively.

Let Wy = (Np N Ny) X (Ng N Ny).It is easy to see A7} (Wq) C S;1(W)
and consequently S, (£) C A;1(£).- Therefore they are equa.l

Conversely, suppose S,, 1(€) = A;1(€). Will show that X is PreT; at
p- Suppose Vg # p, the set {p,q} is not indiscrete i.e. there exists either a
neighborhood N, of p with N, N {p,q} = {p} or a nexghborhood N, of g with
NyN{p,q} = {q}. Suppose N, N {p,q} = {q}. Note that ¢; € S;'(X x N,) and
by assumption there exists a ba.sxs element A"(W) of A7 1({ ) conta.mmg g2 and
AZY(W) C §;1 (X xN,), where W = N,,x(N NNg). Aga.m by assumption, there
exists & basis element 8, 1(Wh) of §;1(€) containing g3 and S; (W) € A;1(W)
where W, = (N, N N} )x (Ng nN’nN”)_ N x M. We cla.lm that NﬂM =0,
Otherwise, suppose r € NN M, a.nd consequently T € S, L(W). But r; is not
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in A1 (W) since Ap(r1) = (r,p) € W. This implies p € N,, a contradiction.
Hence NN M = ¢. Suppose N, N {p,q} = {p}. Then ¢ € A;}(X x N, = U).
By assumption there exists a bas1s element S; (W) of S, l(E) such that q €
S; Y (W) C A1 (U), where W = Ny x Ny -pis not in N,. Otherwise g € S;Y(W)
but g2 is not m A1 (U)(since g ¢ Np) Hence pis not in N, i.e N, n{p,q} {q}
and by the first ca.se in above we get the result. Therefore X is PreTg at p.
The proof of the parts (4) and (5) follows easily.

1.7 Lemma. The induced topology on X V, X from X? via A, and the
wedge topology &' of X V, X i.e the coinduced topology on X V, X from X via
injections i, and i, are the same.

Proof. To show & C A‘l(f), where £ is the product topology on X2,
let U € ¢. Hence i7'(U) and i;'(U) are open in X. If p is in U, then let
V = i7}(U) x i;'(U). Note that V is open in X? and U = Aj 1(V) Hence
Ue€ A ). Ifp¢ U, then let V = (i7'(U) x B) U (B x z;l(U)) which is
open in X 2, It is easy to see that U = A;'(V). Hence U € A;'(£). Therefore
' C A;'(€). We now show that A;(£) C ¢. Let U € A 1(f) ie U= A1 (W)
for some open W = |J;¢;(N; x M) in X? and N; M; a.re open in X for each
i. It is easy to see that iz'(A;'(N: X M;)) = N;, M; or ®, the empty set,
for k = 1,2. Consequently zkl(U) is open in X for k = 1,2. Hence U € ¢'.
Therefore A;1(€) C €. This completes the proof.

1.8 Remarks

By Lemma 1.7 we have:

1. X is Ty at p iff the induced topology on X v, X from the wedge space
(X vp X, &) and the discrete space, DX, via the identity map and the fold map
at p, Vp, respectively, is discrete.

2. X is PreT; at piff £ = §;1(£), where ¢’ is the wedge topology defmed
above and £ is the product topology on X2.

In order to give a theorem related to a point free definition of the sepa-
ration properties(usual ones) for a topological category over sets, which works
for a topos also, we turn to the generic point method of topos theory [5] p.39.
Since in general, objects in a topos may not have points, but they always have
the generic point.

Let Top and Sets denote the category of topological spaces and the cat-
egory of sets, respectively. Recall [8] p.279 that the forgetful topological functor
U : Top — Sets has a left adjoint, called the discrete functor.

Let X be a set and Sets/X be the localization of X ,[6] p.46. It is well
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known that the functor ( )* : Sets — Sets/X given by A* = (m;: X x A — X))
has a left adjoint Y : Sets/X — Sets defined by Y (f: A — X) = A, [5] p.35.
Recall that under 3 the generic element é : 1 — X*X ,[5]p.39, of X corresponds
to the diagonal A : X — X2, where 1 is the teminal object of Sets/X. It is not
hard to see that after applying 3 to the principal § axis map, As, the skewed §
axis map, S5, and the fold map, Vs at §, we get the principal axis map, A, the
skewed axis map, S, and the fold map V, respectively.

Let X be a topological space and Top/X be the localization of X. The-
orem 1.5 at the generic point, § corresponds to the following theorem which is
a point free version of 1.5.

2.1 Theorem 1. X is Ty iff the induced topology on X2V X? from X3
and DX? via A and V, respectively is discrete, where DX? is X? with discrete
topology. : :

2. X is Ty iff the induced topology on X? VA X? from X* and DX? via
S and V, respectively is discrete.

3. X is PreT; i.e. for each distinct pair z and y, if the set {z,y} is
not indiscrete, then there ezist disjoint neighborhoods of x and y iff the induced
topologies on X2V X? from X3 by A and S agree.

4. X s Ty iff X is Ty and PreTs.

5. X is T3 iff X is Ty and X/ F is PreT; for all nonempty closed subsets,
F of X, where X/F is defined in 1.5. A

6. X is Ty iff X is Ty and X/ F is T3 for all nonempty closed subsets, F'
of X.

Proof. 1. Suppose the induced topology is discrete. We show that for
any distinct points z and y if each neighborhood N, of z contains y, then there
exists a neighborhood N, of y not containing z. Note that {(z,y):} = V"}(U)n
A~Y(W) for some open sets U and W in DX? and X3, respectively. It follows
that U = {(z,y)} and W D N;x N, X N, for some neighborhoods N, and N, of z
and y, respectively. Note that z ¢ N, since, otherwise (z,z,y) = A((z,y)2) € W
and consequently {(z,y)2,(z,y)1} = V"1(U) N A~}(W), a contradiction.

Conversely, suppose X is Ty i.e. for any distinct points z and y, there
exists a neighborhood N, of z not containing y or there exists a neighborhood
Ny of y not containing z. It is easy to see that if the first case holds, then
{(z,¥)2} = Vaa({(z,y)}) N A~(N, x Ny x X). If the second case holds, then
{9} = V-1{(z,9)}) N A71(X x Ny x X). If z = y, then {(2,9)r =
(z,9)2} = V"1({(z,y)}) n A~1(X3). Hence each singleton in X?Va X? is open
and consequently the induced topology is discrete.

The proof of the part (2) is similar to the part (1) and the part (2) of
Theorem 1.5.
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3. Suppose A~1(£) = §~1(€) where £ is the product topology on X3. We
show that X is PreT;. Suppose for any distinct points z and y of X, the set {z, y}
is not indiscrete i.e. there exists a neighborhood N, of y not containing z or
there exists a neighborhood N of z not containing y. We consider the first case.
Note that, by assumption and consequently by Lemma 1.6 (z,y), € S™1(W3) C
A~Y(Wh) c §"Y(W), where W = X% x N,,W; = N, x N, x (N, N N}), and
Wi = (No N N.) x (Na N NL) X (Ny N N,ANY) = N x N x M. We claim that
N N M = &. Suppose there exists r € N N M. Note that (z,7,7) € W;. Hence
(z,7)1 € S~1(W,) and consequently (z,7); € A~!'(W};), a contradiction since
z ¢ N,. For the remaining case just change the role of z and y. Hence X is
PreT;.

Conversely, suppose X is PreT;. To show §~1(¢) C A~!(£) we use Lem-
ma 1.6. Let U = §~1(W) be any basis element of §~!(£), where W is a basis ele-
ment of the product topology, £ on X3. Let (z,y) € U. Then S(z,y) = (z,v,9)
or (z,z,y). Suppose S(z,y) = (z,y,y) € W,where W = N, x N, x N, and
N; and N, are neighborhoods of z and y, respectively. If the set {z,y} is in-
discrete, then clearly (z,y); € A=Y (W) C S~Y(W). If {z,y} is not indiscrete,
then there exist disjoint neighborhoods N, and N, of z and y, respectively. Let
Wi = (NzNN7)x(NyNN})x(NzNN}) and clearly (z,y); € A~}(W)). To show
A~Y(Wy) C S7Y(W), let (¢,d) € A~*(W). Then A(c,d) = (c,d,c) or (¢,c,d).
The second case can not happen since N; N Ny is empty. For the first case,
we have (¢,d,d) € W since d € N, and consequently (c,d) € S~1(W). Now
suppose S(z,y) = (z,z,y) € W = Ny x Nz X N,. If {z,y} is indiscrete, then’
let Wy = N, x (N N Ny) x N, C W. It is easy to see that (z,y) € A~Y(W))
and A~} (W;) € §~Y(W). If the set {z,y} is not indiscrete, then by assump-
tion there exist disjoint neighborhoods N; and N, of z and y, respectively. Let
Wy = (N:NNL)x(NzNN;)x(NyNN;) and clearly (z,y); € A~'(W;). To show
A~Y (W) C 7Y (W), let (¢,d) € A~'(W;). Then A(c,d) = (¢, d,d) or (c,c,d).
The first case not happen since N; N N, is empty. For the second case, we have
(c,d) € S~Y(W). Therefore S~ C A™1(¢).

To show the converse, we use Lemma 1.6, again. Let U = A~1(W) be
any basis element of A~1(£) and (z,y) € U. Then A(z,y) = (z,z,y) or (z,¥, ).
Suppose A(z,y) = (z,z,y) € W = Ny X Ny x Ny. If {z, y} is indiscrete, then let
Wy = (N;NNy) x Ny x Ny, C W, and it follows easily that S—}(W,;) Cc A=Y(W).
If {z,y} is not indiscrete, then there exist disjoint neighborhoods N and N, of
z and y, respectively. Let Wy = (NN Nz X Nz)N(N;) x (Ny N Ny). It is clear
(z,y) € S~Y(Wh) C A=Y (W). Suppose A(z,y) = (z,y,2) € W = N x Ny X N,.
If the set {z,y} is indiscrete, then S~}(W) C A~Y(W). If {z, y} is not indiscrete,
then let Wy = (N;NN/) x (NyNN})x (NyNN}), where N.N N} = & (since X
is PreT3). It follows easily that (z,y) € S~} (W;) C A~}(W). Hence A~1(§) C
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S§~1(€). Therefore ATY(E) = ST1(8).
The parts (4),(5) and (6) follows easily from 1.4 and 1.5.

2.2 Remarks

1. It follows from 1.5 and 1.8 that A~1(¢) = ¢/, where ¢’ is the coinduced
topology on X2Va X? from X? via injections 4; and i.

2. We can also have :X is Ty iff the induced topology on X2V X2 from
the wedge topological space X2 Va X? end discrete topological space DX? via
the identity map and the fold map, respectively is discrete.

3. X is PreT; iff S~1(&) = ¢’ where £ is the product topology on X2 and
€' is the wedge topology on X2 v X2.

4. By parts (2) and (3) and Theorem 2.1. we can have two ways of
characterizing each of Ty, PreT;, T3, and Ty, and four ways of characterizing 7.
Furthermore in [1] the notion of closedness was introduced in terms of 73 at p
and Ty at p. In view of this and the above results, the various generalizations of
the separation properties, namely, two notions of each of Ty and PreT5, and four
notions of each of 73,73, and T4 are defined in [1] for an arbitrary topologlca.l
category over sets.

5. There are several well-known generalizations of the usual 7 axiom of
topology (see[12]). F. Schwarzin [12], has showed that these notions lead to
two different concepts: Tp and separatedness. In [2], it is shown that our Ty’s
and known ones, in general, are different.

6. General results involving relationships among our various generalized
separation properties as well as interrelationships among their various forms will
be established in a subsequent paper. Furthermore, in the subsequent paper,
four various generalizations of each of T, (Hausdorff) and T’s (completely normal)
will be given.
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