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Presented by Z. Mzijajlovié

In this paper we consider rings whose multiplicative semigroups are nil-extensions
of a union of groups, and we prove that such a ring is a complete direct sum of a nil-ring
and a Clifford’s ring ( i.e. a ring with Clifford’s multiplicative semigroup). Some interesting
corollaries whenever ring is periodic are also obtained.

1. Introduction and preliminaries

Throughout this paper Z* will denote the set of all positive integers. A
semigroup S is m — regular if for every a € S there exists n € Z* such that
a™ € a™Sa™. A semigroup S is Archimedean if for all a,b € S there exists
n € Z% such that a™ € SbS. A semigroup S is completely Archimedean if S is
Archemedean and has a primitive idempotent.

By E(S) we denote the set of all idempotents of a semigroup ( ring ) S. I
e is an idempotent of a semigroup S, then G, will denote the maximal subgrou
of § with e as its identity and 7, will denote the set T. = {z € S|(3In €
Z*)z" € G.}. The same notation we will use in rings (i.e. in multiplicative
semigroups of rings).

An element a of a semigroup (ring) S with the zero 0 is nilpotent if there
exists n € Z* such that a™ = 0. A semigroup (ring) S is a nil-semigroup (nil-
ring) if all of its elements are nilpotents. If n € Z*, then a semigroup (ring)
S is n-nilpotent if S™ = {0}. An ideal extension S of a semigroup K is a nil-
ertension (n-nilpotent ertension) of K if S/K is a nil-semigroup (n-nilpotent
semigroup). A subsemigroup K of a semigroup S is a retract of S if there
exists a homomorphism ¢ of S onto K such that ap = a, for all a € K. Such
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a homomorphism will be called a retraction. An ideal extension S of K is a
retract exztension (or retractive extension) of K if K is a retract of S.

By UG o N we denote the class of all semigroups that are nil-extensions
of a union of groups. A semigroup identity u = v is a UG o N — identity if every
semigroup that satisfies u = v is in UG o N, i.e. if the semigroup variety [u = v]
is a subclass of UG o N'. All of UG o N-identities were described by Theorem 1
[6].

If R is a ring, MR will denote the multiplicative semigroup of R. A
semigroup S is a Clifford’s semigroup if it is regular and idempotents of S are
central (or, equivalently, if S is a semilattice of groups). A ring R is a Clifford’s
ring if MR is a Clifford’s semigroup. A ring R is a J-ring if it satisfies the
Jacobson’s property, i.e. if for every a € R there exists n € Z*,n > 2, such that
a™ = a.

It is known [8] that a ring R is a p-ring, where p is a prime, if R is
isomorphic to a subdirect product of fields of order p. A. Abian and W. A.Mc
Worter [1] proved that a commutative ring R whose characteristic is p and
zy? = zPy holds for all z,y € R is isomorphic to a direct sum of a p-ring and
a nil-ring. M.Petrich [9] described rings in which the identities azy = azay
and zya = zaya hold. These rings are direct sums of a Boolean ring and a 3-
nilpotent ring. Here we describe rings in which MR is a nil-extension of a union
of groups and rings that satisfies 4G o N-identities, which generalize results of
(1], [9] and [5].

For undefined notions and notations we refer to [2], [7] and [5].

In the next cosiderations the following results will be used.

Lemma 1. [3] Let p be a congruence on a w-regular semigroup S.
Then every p-class of S that is a regular element in S/p contains a regular
element from S and every p-class of S that is an idempotent in S/p contains an
idempotent from S.

Lemma 2. [4] Let S be a nil-extension of a union of groups K. Then
every retraction ¢ of S onto K has the following representation:

TP = ze ifz €T, e€ E(S).

Veronesi’s theorem. [10] A semigroup S is a semilattice of completely
Archimedean semigroups if and only if S is w-reqular and every regular element
of S is completely regular.
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Proposition 1. [5] If R is a ring such that MR is a semilattice of
completely Archimedean semigroups, then R is an exztension of a nil-ring by a
Clifford’s ring. :

2. The main results.

Lemma 3. If R is a ring such that MR is a nil-eztension of a Clifford’s
semigroup K, then K is a subring of R.

Proof. Clearly, K is closed under multiplication. Assume that z,y € K.
Then z € Ge, y € Gy, for some e, f € E(R). Assume that z — y € Ty, for some
g € E(R). Since K is an ideal of MR, then

u(z — y) = ul(z - ¥)¢ls
for u € {e, f,ef}, and (z — y)¢ = (z — y)g, by Lemma 2. Thus
u(z - y) = u(z — )g,
for u € {e, f,ef}, so
z—ey=zg9—eyg, fz-y=fzg—yg, fz—ey= fzg-—eyy,
since E(R) is a semilattice. Therefore
z-y = ag-eyg+ey+ frg—yg— fz

zg—-yg+ey— fz+ fr—ey
zg—-yg=(z—-y)g€ K.

therefore, K is a subring of R. 5]

Theorem 1. The following conditions on a ring R are equivalent:
(i) MR is a nil-extension of a union of groups;
(ii)) MR is a nil-extension of a Clifford’s semigroup;
(iii) R is a direct sum of a nil-ring and a Clifford’s ring;
(iv) MR is a direct product of a nil-semigroup and a Clifford’s semigroup.

Proof. (i) = (ii). This follows by Theorem 1 [5].

(ii) = (iii). Let MR be a nil-extension of a Clifford’s semigroup K.
By Theorem 2.3. [4] we obtain that there exists a retraction ¢ of (R,.) onto
(K,.). By Veronesi’s theorem and by Proposition 1 it follows that the set N
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of all nilpotents of R is a ring ideal of R and that the multiplicative semigroup
of the factor ring B = R/N is a Clifford’s semigroup. Let v be the natural
homomorphism of R onto B. Since MR is a w-regular, then by Lemma 1 it
follows that for every coset a € B we can choose a representative, in notation
a’, such that @' € K (i.e. we can choose a' € K such that (a')v = a). By
Everett’s theorem (see [5]) we obtain that R is isomorphic to the Everett’s sum
E(N;B;#6;[,];(,)) where the triplet (6;[,];(,))) is determined by

(1) ab*=a.d, °=d.a, a€N,a€B,
(2) [a,b]=a +b — (a-b), a,b€ B,

(3) (a,b)=d .5 - (a.b), a,be B,
and the addition and the multiplication on N X B are defined by
(a,a) + (B,b) = (a+ B + [a,b],a + b),

(a,a).(B,b) = (a.B + (a,b) + 6°8 + ab®,a.b).

By Proposition 1 and Lemma 3 it follows that N and K are ideals of R, so for
all a,b € B,a € N, we have that

b =a.a e NNK ={0}, 0°a=d.a€ NNK = {0},

[a,b)=a' +b' —(a+b) € NnK = {0}, (a,b)=a".b'—(ab) € NnK = {0},

so 0, [,] and (,) are zero functions. Thus, R is a direct sum of rings N and B.
(i1i) = (iv) = (i). This follows immediately. ]

Corollary 1. The following conditions on a ring R are equivalent:
(i) MR is a nil-eztension of a union of periodic groups;
(ii) MR is a nil-extension of a semillatice of periodic groups;
(iii) R is a direct sum of a nil-ring and a J-ring;

(iv) MR is a direct product of a nil-semigroup and a semilattice of periodic
groups. ~

Proof. (i) = (ii). This follows immediately.

(1i) = (iii). Let (ii) hold. Then by Theorem 1 we obtain that R is a
direct sum of a nil-ring N and a Clifford’s ring B. Clearly, MB is a union of
periodic groups, so B is a J-ring.
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(iii) = (iv). Let R be a direct sum of a nil-ring N and a J-ring B. Then
by the Jacobson’s ”a™ = a theorem” it follows that B is commutative and it is
clear that M B is a union of periodic groups, so M B is a semilattice of periodic
groups. '

(iv) = (i). This follows immediately. [

Corollary 2. [5] The following conditions on a ring R are equivalent:
(i) MR is a nil-extension of a band;
(ii) MR is a nil-extension of a semillatice;
(iii) R is a direct sum of a nil-ring and a Boolean ring;

(iv) MR is a direct product of a nil-semigroup and a semilattice. [

Corollary 3. Let R be a ring. Then MR is an n-nilpotent extension of

a union of groups if and only if R is a direct sum of an n-nilpotent ring and a
Clifford’s ring. ]

Let
4 u=ov

be a semigroup identity that contain letters z1,z2,...,2,. Fori € {1,2,...,n}
by |zi|u (|zi|») we denote the number of appearences of the letter z; in the word
u(v), and by p; we denote the number p; = ||zil. — |zi|,|. The identity (4)
is periodic if some numbers py, p,,...,p, is greater than 0 [6]. In this case the
number

p=g.cd.(p1,P2,---,Pn)

is the period of an identity (4). Every semigroup that satisfies a periodic identity
is periodic. By Theorem 1 [6] it follows that every UG o N-identity is periodic.

Lemma 4. (i) Every group that satisfies the identity of the period p
satisfies the identity z = zP+!,

(ii) Every commutative group that satisfies the identity x = zP*! satisfies
every identity of the period p.

Proof. (i). This follows immediately.

(ii). Let S be a commutative semigroup that satisfies the identity z =

zP*1, let u = v be an identity as in (4) of the period p. Then it is clear that S

is a union of groups, so S satisfies all of identities z's = 2", where I; = |z;|,, and
ri = |zily,t € {1,2,...,n}, whence § satisfies the identity

l

Iy 2 IR S
2w .. .ay = Bl IR

n
n
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so by the commutativity in S it follows that S satisfies u = v. =

Theorem 2. A ring R satisfies the UG o N -identity (4) of the period
p if and only if R is a direct sum of a nil-ring that satisfies (4) and a nil-ring
that satisfies the identity z = zP+!.

Proof. Let R satisfies (4). Then MR is a nil-extension of a union of
groups, and by Theorem 1 [6] it follows that subgroups of MR are peroidic.
Thus , by Corollary 1 we obtain that R is a direct sum of a nil-ring N and a
J-ring B. Clearly N and B satisfy (4). Since MB is a union of groups and
since (4) implies the identity z = zP*! in subgroups of M B, we then have that
B satisfies the identity z = zP*1.

Conversely, let R be a direct sum of a nil-ring N that satisfies (4) and
of a ring B that satisfies the identity z = zP*!. By the Jacobson’s "a™ = a
theorem” it follows that B is commutative, so by Lemma 4. B satisfies (4).
Therefore, R satisfies (4). ]

By A} we denote the free semigroup over an alphabet A; = {z,y}. By
the next result we describe one class of identities that implies commutativity in
rings.

Corollary 3. Every ring that satisfies the identity
Ty =w

, where w € A} is a word such that w & {zy™|m € Z*} U {z™y|m € Z*}, is
commutative.

Proof. This follows since every nil-ring that satisfies the identity zy = w
is a null ring and since this identity is either the identity zy = yz or it is a
UG o N-identity (by Theorem 1 [6]). ]

Example. Identities of the form zy = z™y or zy = zy™, m € Z*, does
not imply commutativity in rings. For example, the ring

r={[5 o]

is not commutative and it satisfies all of identities zy = z™y, m € Z*.

a,be ZQ}
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