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Oscillations in Linear Differential-Difference Equations
D. P. Tsvetkov

Presented by P. Kenderov

In this paper it is shown that a differential-difference equation has a nonoscillatory
solution if and only if its characteristic function has a real zero. In this way it is proposed an
oscillation criterion for the equations discussed in [1].

Introduction

Consider a differential-difference equation of the following form
(4)

(1) ~ D | Desat-85)) =0

i€l \jeJ e

where ¢;;,8;; € R fori € I, j € J; I and J are finite sets of nonnegative whole
numbers. Our purpose is to find conditions under which every real solution of
such an equation, defined on certain interval (-,00), has oscillatory behavior.

In the ”"regular” cases, i.e. when Eq.(1)is neutral /or becomes neutral af-
ter a time-translation eventually that is essentially the same/ or Eq.(1) presents
an entirely difference equation, O. Arinoand I. Gy 6 ri [2] proved the
following result.

(*) Eq.(1) has a nonoscillatory solution if and only if its character-
istic function
def i
x(z) = z Z cijz'exp(—zP;i;)
i€l jeJ
has real zeros.
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More precisely, Arino and Gyory proved (*) for neutral equations but it is not
difficult to see that the method, used in [2], can be applied in the same way to
the difference equations. It is enough for a reader, who is not acquainted with
the classification above, to think that Eq.(1) is ”"regular” when the zeros of the
characteristic function x belongs to certain half-plane Rez < C. When Eq.(1)
is "regular”, we have a well-posed initial-value problem; also solutions are not
growing faster than exponentially.

Nonoscillatory solution /NS/ is said to be a solution which does not
change its sign on certain interval (-, 00). Hereafter we will precise this definition.
The first part of (%) is evident. If the characteristic function has a real zero p
then exp(ut) is a NS of Eq.(1). The difficulties come in the another part.

In the "regular” cases, the solutions of Eq.(1) are assumed in the conven-
tional sense /see, for instance, R. Bellm an and K. Cook e [3:Ch.6]or A. D.
Mishkis[4:Ch.l]or J. K. Hale [5:Ch.7,Ch.12]/. Furthermore, we have a
well-posed initial value problem. In particular, the solutions are continuable up
to oo and continuous at least and, as we have already pointed out, the solutions
are not growing faster than ezponentially. The latter helps Arino and Gyori to
find a brief and clear proof by using the Laplace Transform /LT/.

Y. C hen g[1], who refers his investigations tol. Gy6ryand G.L ad
a s [6], studies the oscillation problem for Eq.(1) without a type restriction and
states that he has found particular necessary and sufficient oscillation criteria.
In this case, as it is announced by R. Bell m an and K. Cook e in [3:Ch.5-6],
LT is not & priori applicable. Therefore the approach of [2] is unusable without
improving. We remove this trouble proving that an adaptation of a NS of Eq.(1)
admits LT in the conventional mode /Theorem 1/. Combining this fact with the
main idea of [2] we prove that proposition (*) is valid without a type restriction
about Eq.(1) /Theorem 2/.

Thus we give a natural oscillation criterion for the first and the second
kind of equations discussed in [1]. Unfortunately, in this abstract, Cheng does
not formulate explicitly his results but it is clear that he does not hold ours.

Definitions

First of all we have to say what we call a solution of Eq.(1). It is known
[4,5] that the forward initial value problem of Eq.(1) is ill-posed in the general
case. Nevertheless, we may choose a convenient definition in terms of the dis-
tributions theory since Eq.(1) generates an operator in C*°(R) which can be
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associated with a distribution of a compact support. Let

()
P S0 (el + )
i€l i€J
be the adjoint operator assigned to Eq.(1). We are convinced that there are
no useful definitions outside the following one, since it replaces the classical
solutions with weak ones; moreover it even does not include initial or any other
conditions.

Definition 1. We call a solution of Eq.(1) a real distribution z €
D'(Az,00) such that .

2) (2,P¥)=0, %€ CS(Bs,00),
where B, is chosen with the property
Py € C(Az,00) when P € C§°(Bg,00)

and (-,-) is the product of D' x C°. Also we call a solution z of Eq.(1) a C*-
solution when z € C°(E, 00) and we call a solution z of Eq.(1) locally integrable
when z € L}, (E, ) for some E € R.

This definition has a translation-invariance property, i.e. z(-) is a solution
if and only if z(-+ Const) is a solution that is rather useful for us. An illustrative
example of Definition 1 is given in the last section.

When we require z to be locally integrable, (2) must be replaced by

(2" /H z(8)Py(s)ds = 0, ¥ € Cg°(Bg, ).

It is not difficult to see the validity of
Proposition 1. A solution z of Eq.(1) is a C*-solution if and only if
there are constants E > E such that z € C*°(E, ) and

3> aa(t-8y) =0

i€l jeJ

fort > E.

Here we do not discuss the existence and the uniqueness of solutions with
respect to the above definition. Also we do not assign solutions with any initial
conditions. The fact of major importance for us is that we require a solution of
Eq.(1) to be defined up to co. This corresponds to the nature of the problem
considered.
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When we say that a continuous function g(¢) does not change its sign
for t > E, we mean that one of the sets {t > E : g(t) > 0}, {t > E: g(t) < 0}
is empty. Of course, a distribution z € D’(Az,00) has no sign but, for a given
¢ € C(R) and large values of t, the convolution

(2, d(t — ) = z4(2)

is a C'*°-function and we can consider its sign.

In the sequel we assume expressions like z4 as infinitely differentable
functions defined on intervals (-, c0).

The distribution calculus implies

Proposition 2. Let z be a solution of Eq.(1). Then x4 is a C*°-solution.

Proposition 3. Let z be a NS of Eq.(1) and ¢ is as in Definition 2.
Then z4 is a C*°-NS.

We are prepared to propose

Definition 2. A solution z of Fq.(1) we call NS if there exist constant
E and ¢ € C§°(R) such that the C*-solution z4(t) does not change its sign for
t > E and z4#0 on every interval (E,oc0) with E > E.

; R e m a r k. Our definitions are given for the sake of convenience with
respect to the oscillatory problem. Perhaps they are not properly applicable
for another problem. These definitions expand the conventional ones [3,4,5].
For instance, when Eq.(1) is retarded, a solution is assumed to be N-times
continuously differentable where N is the maximal order of differentiation in
Eq.(1). When Eq.(1) is neutral, a solution is assumed to be (N — 1)-times
continuously differentable with /at least/ piece-wise differentable (N — 1)-th
derivative. In both cases simple calculation shows that a solution of Eq.(1)
satisfies (2'). Such a solution can be considered as a distribution, defined on
certain interval (-,00), with locally integrable derivatives up to N-th order.
Also Definition 1 comprises the case when one requires a solution of Eq.(1) to
be a function z such that

Z-’E(- — Bi;) € C*(Ei z,00); tel,

Jj€J

and (1) holds for t € (E;, ).
Using a translation with

= max -0
B i€l jed Bij
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we rewrite Eq.(1) in the form

(%)
(3) Z (Z c;,-z(t - ﬂ;j — ﬂ)) =0.

i€l \jeJ

Obviously z is a /nonoscillatory/ solution of Eq.(1) if and only if z is a /nonoscil-
latory/ solution of Eq.(3) in which some of the numbers §;; + 3 equal zero. Thus,
for sufficiently differentable z, the left-hand side of Eq.(3) becomes

Y a0+ 3 3 byt - i)

1=0 i€l° jeJe°

with a;; = B;; + 8 > 0 for i € I°, j € J° and a, # 0. Below we use only the
latter form. We assume I° # V and J° # V. Otherwise Eq.(1) reduces to an
ordinary differential equation for which the results, we are going to prove, are
trivial. Further, without loss of generality, we assume a, > 0. Eq.(3) has a
characteristic function

n
x°(2) def Za;zi + Z Z bi;z'ezp(—zaij;).
i=0 iel° jeJo
Actually
x(z) = exp(B2)x°(2).
Therefore x has a real zero if and only if x° has the same property.
Lemma 1. Letz be a NS of Eq.(1) and ¢ is as in Definition 2. Then
there is a function ®(-;z) € C*°(R) with
i. ®(t;z) =0 for t < 0 and ®(-;z) is nonnegative on the real azis. Also
®(-;z) # 0 on every interval (-,00).
ii. ®(-;z) satisfies the equation

(4) i:a@“)(t;z) +3° 5 680t - aij32) = h(1), | tER,

i=0 i€l jeJe
where h € C§°(Ry4).
Such a function ®(-;z) we call an adaptation of x.

Proof. According to Proposition 3, z4 is a C®°-NS. Therefore z4 is
defined as a C*-function for large values of the argument and satisfies Eq.(3)
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on certain interval (E;,00) C Ry. In view of the fact that +z4 is also a C*-NS,
without loss of generality, we assume z4 to be nonnegative at (E;,00). We set

def [ z4(t) for t> E;
y(t) = { 0 for t<E,

and
7] déf s)k(t — s)ds
y(t) /y( ) (t )

where k € C$°(R) with supps C [—1,1] and &(s) > 0 for s € R. The function,
we are looking for, can be determined as

3(;2) ¥ (- - C)

with large fixed C € R.. It is sufficient to choose C > E;+2. One can complete
the proof immediately. L]

The Main Result

Denote by L, the set of the functions g € L1 oc(a, o) for which there is
q € R such that
o0
[ lotolecp(-at)dt < oo.

Let
L% L
aeR
Our basic result is

Theorem 1. Let z be a NS of Eq.(1) and let ®(-; z) be its adaptation.
Then &(-; z) belongs to L. Moreover, for LT of ®(-;z), we have

(5) X°(p) /0 " exp(—pt)®(t; z)dt = /0 ™ eap(—pt)h(t)dt

for p > po.

The proof of Theorem 1 is in the next section. The integral on the left-
hand side of (5) presents an analytic function in the half-plane Rep > po. Thus
the validity of (5) for real p > po implies its validity likewise for complex p with
Rep > po.

R em ark. Further, when we use LT, we restrict ourselves to considering
only real values of p since this is sufficient to perform our approach. Theorem
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1 shows that the adaptation ®(-,z) admits LT as a solution of Eq.(4) in the
conventional mode.

Corollary 1. Let = be a NS of Eq.(1) and ¢ is as in Definition 2. Then
z4 belongs to L.

Proof. Let ®(-;z) be the adaptation of z and p > po. Remember that
k is chosen to be nonnegative. Then using the Fubini’s theorem we get

/oo ®(t; z)exp(—pt)dt = /oo z¢(t)ezp(-—pt)dt/ k(t)ezp(—pt)dt
(1] E; R

/see the proof of Lemma 1/ which completes the proof.
; ]

Corollary 2. Let = be a locally integrable solution of Eq.(1) which does
not change its sign almost everywhere on certain interval (-,00). Then z € L.

For a proof it is enough to retrace the proof of Corollary 1.

We have mentioned above that the absence of real zeros of the charac-
teristic function is a necessary condition for the absence of a NS of Eq.(1). We
will show that this condition is also sufficient. Qur main result is

Theorem 2. FEgq.(1) has a NS if and only if its characteristic function
has a real zero. :

Proof. The proof is based essentially on the proof of Theorem 2.1[1]. It
remains to show that, in the case when the characteristic function has no real
zero, Eq.(1) has no NS.

Assume that x° has no real zero and, nevertheless, Eq.(1) has a NS =z.
Then the adaptation ®(-;z) is a nonnegative C*°-function which, according to
Theorem 1, satisfies (5). Also we have x°(p) # 0 with large real values of
p. These facts, in accordance with the the proof of Theorem 2.1[1], lead to
the existence of a constant Fg such that ®(¢;z) = 0 for ¢ > Ep. The latter
contradicts point i of Lemma 1. . ]

As we have pointed out, Theorem 2 has already been proved when the
expression of Eq.(1) corresponds to a neutral or difference equation. It shows
that we may exclude out of consideration the equations of the mentioned types
but the proofs we propose do not need this assumption.

Let us close this section with

Corollary 3. Fq.(1) has a locally integrable solution, which does not
change its sign and does not equal zero almost-everywhere on certain interval
(+,00), if and only if its characteristic function has a real zero.

For a proof it is enough to see that the adaptation is a C°°-NS and then
to repeat the proof of Theorem 2.
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Proof of Theorem 1

Introduce the function

def | exp(th) — Xy &Y for t>0
Gm(tA) { 0 for t<0

where A > 0 is a real parameter.
It is easy to check the validity of

Lemma 2. The function G,,(-A) has the following properties.
i. Gn(-A) is nonnegative on the real aris and

G N
(Gm(tA)) = NGpn_i(t\), i=0,....,m, teR.

ii. The following equalities hold

t t ;
/ g9t — 7 — u)Gm(ud)du = / g(t —uw)GY((u—7)N\)du, i=0,...,m
() ~ 0
for t,y > 0 where g € C™(R) is a function with g(s) = 0 for s <0.
iii. For LT of G,,(-\) we have

) ,\m+l 1
/0 ezp(—pt)Gm(tA)dt = Fip—x P> A e

Our preparation finishes with
Proposition 4. Let f,g: R — R are locally integrable functions which
equal to zero on R_ and p € R. Let also f,g # 0 and

T ’ooo ezp(—pt) (/ot f(t - s)g(s)da) dt < oo.

Then f and g belongs to L. Moreover

J =./0°° ezp(—pt) f(t)dt /ooo exp(—pt)g(t)dt. e

The proof is a simple application of the Fubini’s Theorem.
P roof of Theorem 1. Let z be a NS of Eq.(1) with an adaptation
®(-;z) and

N = max 1
i€l
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Then according to (4) we have

z": a;®0)(t — u;z) + Z E bij®C)(t — u — a;j;2) = h(t — u)

1=0 i€l° jeJe

for t,u € R. Multiplying the latter with G ~(-A), integrating at [0, ] and using
points i-ii of Lemma 2 we get

(6) /ot ®(t — u; 2)G(u; \)du = /ot h(t — w)Gn(uA)du, 20,

where

G(A) =D aNGNoi(N) + D D biNGNi((- — @ij)A).
=0 i€l jeJeo
Now we are going to show that G(-; A) has a constant positive sign at (0, c0) for
every sufficiently large A. We have

G(;A) = A"GN=n(-N) (a,,l + S1(:5A) + Sa2( A)) |

where
Gn-i(-))

n—1
$1(50) = 3_aX T EES

=0

and

1A) = CGN-i((- = @ij)A)  ezp(-A) Ai—n
R iezl:w;o i ezp((- — @i;)A) GnN-n(-)) ezp(aijA)’

It is clear that the inequalities

Gn-i(u)) :
L <t <
0 = S ’ 0<i<n,

hold for u > 0 which implies that S;(u; A) tends uniformly to zero with respecf
to u > 0 when A — oo. Also

Gn—i((u — aij)\) S
0< <1, u>0, iel’jeJ’
ezp((u — ai;)N) AT

The function
ezp(u)

T(u) = ———GN-n(“)
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is decreasing for u € (0,00). Then

-n

1S2(u; M) < Y- D Ibijlr(Aas) ——— (a 5y v20

i€l° jeJe°

Here we use essentially the fact that every a;; is a positive number. In this way

hm sup(lSl(u ,\)|+ | S2(u; '\)')

—’mu

and this allows us to choose g > 0 such that
sign(G(u; A)) = sign(a,) = 1, A>p, u>0.

We must keep in mind that G(u;A) = 0 for u < 0. Further we assume A = p.
Now using (6) we get

/oo° ezp(—pt) (/0‘ ®(t — u; )G (u; y,)du) dt < 0o

for real p > po since h and G (-)A) are exponentially bounded. Then we are able
to apply Proposition 4 which gives ®(-;z) € £ and

(7) G(p; n)®(p; ©) = G (pr)h(p)

where the hat denotes LT. We obtain (7) for real p > po which provides its
validity also for complex p with Rep > po.
Point iii of Lemma 2 yields

N+1 1
G(pip) = p,m ey x°(p)

as well ¥ 1

Thus (7) becomes

pN+1 g o(oyiri 2) uN+1 g P
g+ p_p X \P)TAP NHp_p (p)

which implies (5).
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Notes

In order to illustrate Definition 1, let us discuss an
E x am p |l e. Consider an equation of advanced type [4:Ch.1]

(8) z(t) —z(t+1)=0
which generates an adjoint operator of the form
Po=—¢'()—¢(-—1).
Let é be the Dirac function. Then the distribution
. .
z.(t)=—Y 6t -k) € D'(0,00)
k=1

is a solition of Eq.(8) in the sense of Definition 1. Actually
(20, P) = $(0) = 0

for every ¢ € C§°(0,00). Here we choose Az, = 0 and B;, = 0. In particular,
z, is not a NS since the characteristic function z — exp(z) has no real zero.

Let us give an interpretation of Theorem 1. It is known /see for instance
Leont’ev [7]/ that a solution z of Eq.(1) can be associated with a Dirichlet series

©) 3 pult)e

HEA

where A is the set of the zeros of the characteristic function and p, are poly-
nomials. It is reasonable to assume that z ¢ £ when the sum in (9) contains
advanced subseries, i.e. there are {u,} with

lim Re p, = oo.

V—00
On the other hand, in this case it is quite possible that z oscillates.

We can extend the applicability of our approach. Consider an equation
of the form

(10) z:; ( /oas z(t - o)da,-(o)) 3 %:( ( / a(t- o)dﬂ‘-(o)) 0 -0

where a;, 0 < i < n, and B;, i € K, are real functions of bounded variation; K
is a finite set of integers which is possible to be empty. We assume that every
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a;, 0 <1 < n, is not a constant in a neighborhood of zero as well a; > 0 for
0<i<mnandec; >b; >0for i€ K. The definitions of the solution and NS of
Eq.(10) remain essentially the same. We have to update only the definition of
the adjoint operator. Unfortunately, here we need a regularity condition to use
the idea of the proof of Theorem 1 without essential changes. Eq.(10) we call
regular if a, has a jump at zero, i.e. a,(0+) — a,(0) # 0. For such an equation
one can receive complete analogs of Theorems 1 and 2. When K is empty,
this result gives nothing new since our regularity condition makes Eq.(10) to be
neutral or functional-difference one with a well-posed IVP. .

Thus we describe an oscillation criterion for the last, third kind of equa-
tions discussed by Y. C h e n g in [2].

Note that an equation of a type (1) is regular in the sense aforementioned.

It is quite possible that the following improvement of Theorem 1 holds.

Conjecture. Let z be a NS of Eq.(1) and ¢ is as in the Definition 2.
Then z4 is ezponentially bounded, i.e. there are real constants C, and o, such
that

{z4(t)| < Crexp(ot)

for t in the domain of 4.

Let us finish with the following remark.

Assume that Eq.(1) is of advanced type. For such un equation the char-
acteristic function has an advanced subseries of zeros {2;}{2,. Let also Eq.(1)
has a NS. Then (5) implies

2=z (-X"t_z) /o°° e“P(—zt)h(t)dt) =0

for Rez; > po. The latter shows that, in general, the existence of a NS is
an essential restrictive condition. This fact gives certain explanation of the
exponential regularity of NS.

Res
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