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On Large Additive Functions over Primes of Positive Density
Aleksandar Ivié

Presented by P. Kenderov

Several asymptotic formulas are obtained which involve certain large additive func-
tions, defined on a set of primes having density § (0 < § < 1) in the set of all primes.

1. Introduction

Let @ be a set of primes such that there exists some constant § satisfying
(0<é<1)and

(1.1) 7(z,Q) := E 1=6Liz +O(zlog B z),
p<z,p€Q

whzere B is a constant satisfying B > 2. Here and later p denotes primes, Liz =
[ dt/108t, 1(2) = 0(9(@)) (same as f(z) < g(z)) means that |(2)] < Ca(z)
2

for some constant C' > 0, g(z) > 0 and z > zo. Such a situation naturally arises
if Q consists of primes belonging to a finite union of arithmetic progressions, or if
Q consists of the set of primes that divide some value of a fixed polynomial with
integer coefficients. A stronger error term in (1.1) naturally leads to sharper final
results in many instances, but for most applications (1.1) is a very reasonable
assumption. Since Liz ~ z/logz as z — o0, it makes sense also to assume that
B > 1in (1.1). The condition B > 2 was imposed by D. A. Goldston and K.
S.McCurley [2], who obtained an asymptotic formula for the function

(12) ¥(z,9,Q):= ), 1 (1<y<a)

n<z,P(n,Q)<y
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where P(n,Q) denotes the largest prime factor of n which belongs to Q. If n
has no prime factors from @, then it seems appropriate to set P(n, Q) =0, and
such n are then not counted by the right-hand side of (1.2). The condition
B > 2in (1.1) is not essential, as was shown by R. R. Warlimont [15], who
evaluated (1.2) in the case when only B > 1 is assumed in (1.1). Nevertheless,
to avoid somewhat more complicated error term in the formula for ¥(z,y,Q)
that Warlimont obtained, and which affects e.g. the right-hand side of (1.4),
henceforth we shall suppose that B > 2 holds in (1.1). As compamon functions
to P(n,Q) we define large additive functions

(1.3) Bn,Q)= > p,  BnQ)= Y op

pln,p€Q p*||n,p€Q

where as usual p®||n means that p* divides n, but p**! does not. It also seems
appropriate to define 3(n,Q) = B(n,Q) = 0 if n has no prime factors from Q.
The function P(n,Q), 3(n,Q) and B(n,Q) are then analogues of the functions

P(n) = max{p: p|n}, B(n) = Zp, B(n) = Z ap.

pln pe|ln

The function 3(n) is additive (meaning B(mn) = B(m)+ B(n) for all m, n such
that (m,n) = 1), while B(n) is totally additive (meaning B(mn) = B(m)+ B(n)
for all m, n). From the above definitions it easily follows that 3(n, Q) is additive
and B(n,Q) is totally additive. Thus these functions may be thought of as large
additive functions (”large”, since e.g. B(n,Q) = B(n,Q) =nif n = p € Q) over
a set of primes Q having positive density é in the set of all primes, as indicated
by (1.1).

An extensive literature exists on various asymptotic formulas involving
the functions P(n), B(n), and B(n). Here we shall mention the monograph [4]
and the papers (1], [5], [7], (8], [9], [11], [13], [16], where references to other works
can be found. No results seem to have appeared so far on the functions 3(n,Q)
and B(n,Q), and only very recently J. -M. De Koninck [3] investigated the
sum of reciprocals of P(n,Q). He proved that

(1.4) Z P Q) (1 +0 (1og_110g_5)) "(Q)(E-g{aﬁf’

where 7(Q) is a positive constant which may be written down in closed form,
’
while in general Z 1/f(n) denotes the sum other those n not exceeding z for

n<z

which f(n) # 0. (J.- M. De Koninck [3] defines P(n,Q) = +oo if n has no
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prime factors from @, but this is only a technical distinction from the definition
made here and bears no consequences on any of the results). It may be noted
that (1.4) is in sharp distinction from the asymptotic formula

(1.5) Z -I% = z exp {—(2log z loglog z)'/2 + O(log z log log log z)/?)}.
2<n<lz

This result was proved in [9], and then sharpened in [13] and [8]. Hence the sums
in (1.4) and (1.5) are of a completely different order of magnitude. One expects
that this effect will carry over to some problems involving the functions 8(n, Q)
and B(n,Q), namely in some problems these functions will behave differently
from B(n) and B(n). On the other hand we may expect that in some problems
B(n,Q) and B(n,Q) will behave similarly as #(n) and B(n). The aim of this
paper is to investigate this topic by proving some asymptotic formulas involving
the functions P(n,Q), B(n,Q) and B(n,Q). In particular we shall evaluate the
summatory functions of these functions and investigate the local densities of
B(n,Q) - B(n,Q). We also note that the sum of reciprocals of 8(n,Q), B(n,Q)
and some related problems are treated by J. -M. De Koninck and the author

(6].
2. The summatory functions

In this section the asymptotic formula for the summatory function of
P(n,Q), B(n,Q) and B(n,Q) is given. The result is contained in

Theorem 1. If

- dH{((8)s™?
AJ = (_I)J . ‘{13.1(‘_2 } |a=2
for 3 =1,2,..., then we have

(2.1) S B(n,Q)=Y" 42" Lo ( 22 ) .

0] B
b 4 i<B log’ = log”® z

Moreover (2.1) remains valid if B(n,Q) is replaced by P(n,Q) or B(n,Q).

Proof. The above result is the analogue of the asymptotic formula

6A; 2 2
(2.2) S bm) =Y logajzx 10 (——-—log; 'Hz) :

n<z i<M
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proved by J.-M. De Koninck and A. Ivié [5], where M > 1 is an arbitrary,
but fixed integer (the A;’s were not evaluated explicitly, except for 4; = w2 / 12).
Naturally in (2.1) the sum over J stops at B, since the error term O(z?/ log? z)
is inherent in the condition (1.1) and cannot be avoided, while such restrictions
are absent in (2.2). If p denotes primes and m, n denote natural numbers, then
we have first

Y@= Y =) X »

n<z n<z n=pm,p€Q m<z/2p<z/m,pEQ

To estimate the last sum over primes write (1.1) as

ey re@=8 [ i reQ,  R@Q=0( )

Writing the sum as a Stieltjes integral we have

(2.4)
z/m tdt z/m
B(n,Q) = tdr(t,Q) = tdR(t,d
r% m<2.1:/2/ PES g:/z / logt m<z /2'/""0 (
dt 2
=6 (Y ¥ Lo 2 tdt
/ m;/t logt (mszz/zmHOgB(z/m)) (mg:/z/z log? t)

¢, g+ (iom7)

where [y] denotes the greatest integer not exceeding y. The same argument gives

tdt s
(2.5) Zﬂ( )_/ [::]logt (log;“:c)

n<z

for any integer M > 1, if we use the prime number theorem in the form

T odt z
"(I) 21 2 logt 0 (logM+l z) L4

p<z

sharper forms of the prime number theorem (see Ch. 12 of [5]) would not give
any improvements. Hence (2.1) follows on comparing (2.2), (2.4) and (2.5).
Of course, it follows directly from (2.4) on noting that by a change of variable
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t = z/u we obtain
/[z tdt 22 /1/2 [u]du
t'logt 1 u3log(£)
u
= 22 /:/2[—,“]. 1:{_:1 logu)k+o logu)M £
logz J; ud ik log z log z

M, A 1
= a8 i +0
= ; log’ z 4 (logM+l z)
with

(26) Aj = Aw [ ]log’ & = (——1)"._.1“!‘7'_1L(~3)_‘s;_ll |s=2)

dsi—1

so that in particularar A; = %((2) = n2/12. To see that the second equality in
oo

(2.6) holds, set K(s) = / [w]Ju=*"'du, which is a regular function of s for Re
s > 1. Then we have '

LK (s

(2.7) Aj = (-1 18—,flla=z-

But integration by parts gives

oot Ko=1 [T 1T @eas,
n=1

so that (2.6) follows from (2.7) and (2.8). Note that by Leibniz’s rule one may
alternatively write A; as

(]— 1)! Z( 2) ¢ (2) G=1,2..).

k=0

To see that (2.1) remains valid if 8(n, Q) is replaced by P(n,Q), let Px(n)
denote the k-th largest prime factor of n if n has at least k prime factors (some
of which may be equal), and otherwise let Py(n) = 0. K. Alladiand P. Erdés
[1]) proved that

3/2 3/2
ZPz(n) Bgz (z: lo§logz)

ey log® z
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with suitable B; > 0, and A. Ivié [12] sharpened this formula. Since

log T z3/2

0< Y (B(n,Q) - P(n,Q)) < Y (B(n) = P(n)) <3

n<z n<z

zpz( )<<

it follows that (2.1) remains valid if 8(n, Q) is replaced by P(n,Q). By Theorem
2, whose proof is independent of Theorem 1, we have

S B(n,Q) =Y B(n,Q)+ O(zloglog z),

n<lz n<lz
so that (2.1) also remains valid if 8(n, Q) is replaced by B(.n,Q).
3. The summatory function of B(n,Q) — B(n, Q)
K. Alladi and P. Erd s [1] proved that

2 (B(n) = B()) = =loglog + O(=),

n<z

and the authors [11] sharpened this formula to

(3.1) Y " (B(n) - B(n)) = zloglogz + Cz + O (1 gz)

n<z

where C is a suitable constant. The method of proof of (3.1) can be elaborated

to yield
z
+0 V=g 1
log’ (logM i :z:)

where M > 1 is an arbitrary, but fixed integer and C;’s are the suitable con-
stants. Moreover the method in question works also for the summatory function
of B(n,Q) - B(n,Q), in which case it gives

(3.2) E(B(n) B(n)) = zloglogz + Cz + z Z

n<z

Theorem 2. There ezist effectively computable constants C(Q), C1(Q),
C2(Q),. .. such that
(3.3)

Y (B(n,Q) - B(n,Q)) = 6zloglogz + C(Q)x + 2 z Gy (Q> +0 (E“I)

n<z
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Proof. We shall give the proof of (3.3), noting that the case § =
B = M leads essentially to (3.2). We have

> (B(n,Q)-B(n,Q))=) > (a-1)p= 3 (a—1)p

n<z n<z polinpeQ pem<z,(pm)=1,a22,0€Q

= Y (a-1p- Y- (a—1)p= 3>,

P"mSIﬂZ?-PEQ Pa+lmszv0220p60 P“mfl"“Zz-PEQ

By the standart splitting-up argument of Dirichlet we have , if a > 2 is a fixed
integer,

N o= b5 P[,%]"'Z Y &g

pem<z,pEQ p<o/(239) peQ m<zl/? p<(z/m)1/° pEQ

Z 1 z P=21+2,—2a

mszl /2 p_<_$1 /(2“),p€Q

say. Now by using (2.3) it follows that

= T tdt z2
2 ' = tdr(t,Q) =6 +0
p /2 o ¥ Q)= / logt (long)

(3'4) PS’!?GQ C 2
- ()
.Z log’ z * log? z

J<B

with suitable constants C;, and in particular Cy = 1/2. Thus by using (3.4) it
is seen that the total contribution of 5 for a > 2 is

[21/2) 611/22—0" +o (22 ) + o)
lgjzl/4 " \logPz

]<

z
= bz — ).
Z logJ (loga z)

Jj<B
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The contribution of 3}, and ), fora > 3 is

z/m)?/e
> (pa1+0(p))+0(z > <_ng>_)

p¢<z’/2,a>3 PEQ m<z1/2 3<aKlogz

) g1/a+1/2
=z Y = ( > p%)+0(11/3)+0( ¥ e )

°>3-PEQ pa>z1/2,a>3 3<alogz
1 1/a—1/2

B 2 I +0(=*")

PEQ P IJ 3<a<logz OB
= g z p2 + 0(z°/®).

PEQ

For a = 2 we have
T 1
X1 = by P[;g]=z ) ;+0($1/2)
p<="‘ PEQ p<z!/4,peQ

_ ’d(to) /2
= "/2_0 +0(z'/?).

But by (2.3) it follows that

(3.5)
v odn(,Q) . [ dt v dR(1,Q)

_.6loglogy §loglog2 + (3;; ) / R, Q)
= éloglogy — 610g10g2+0( ) / R(tté)dt +0 (/ dtB )
v
1

tlog”t

=éloglogy+ D, + O B
log® y

D, = M-&loglogz
2 t2

If we take y = z'/4 in (3.5) and insert the resulting formula in the expression
for 3, we shall obtain

where

b2 _6loglog:¢:+D(Q):c:+O(l og? z)
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where
* R(t,Q)dt

D(@Q) = -

For a = 2 we obtain, using (3.4),

X2 = Z E p

m<zl/? p<(:¢:/m)1/2 PEQ

bz Y, — (Z log’(:t/m) » (m))

— 6(log4 + log log 2).

m(zl/2

We recall (see e.g. (A.23) of [10))if f(t) € C'[X,Y], X <Y, ¥(t) = t—[t]—1/2,
then the classical Euler-Maclaurin summation formula asserts that

3 fm)= / F(@)dt = w(¥)F(Y) + (X)F(X) + ] bt (t)d.

X<n<lY

We apply this with X = 1/2,Y = z'/2, f(t) = t~'log™(z/t) to obtain, if M is
any fixed integer satisfying M > j + 1,
(3.6)

) .

m<oi/a mlog’ (z/m)
__ z1/2 dt 178 z1/2 di
- /1/2 tlog’(z/t) RS Cag /112 gy )(log(m/t) D log’(z/t)

e du = Cjk 1
= - : O\ ———7-—) .
Ll/? ulog’ u b g log z Al (logM"”1 z)

Noting that

22 du 1
= log(l - 1/%) = ( ) ,
/zlli g og(log 2z) — log(logz"/*) = log 2 + kz_: og = +0 logM'H z

where D; x = (—1)¥1log* 2/k, and that for j > 2
= du 1 . N e By 1
= T ((log2e)' i -(og ") = 30 D40 ()
_/xmulog,u 1_J((og z)' ' —(log z'/?)'~?) k-_-ijl logkz+ TogM 1 7

with suitable constants E; s, it follows when we substitute (3.6) in the expression
for 37, that with suitable constants Fj

2a= (log = E log-7 (long z)) y
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From the above expressions for 3,, >, and 23 we obtain the assertlon of
Theorem 2.

4. Other problems involving B(n,Q) — B8(n, Q)

In this section we shall investigate the sum of reciprocals of B(n,Q) -
B(n,Q), and the corresponding local densities. We shall prove first

Theorem 3.  There is a constant A(Q) > 0 such that

/ 1
e 2 5w ) - B Q)

= A(Q)z + O(2'/*log z),

where 3" denotes summation over n such that B(n,Q) # B(n,Q).

Proof. The proof uses the analytic method given in the proof of Theo-
rem 6.5 of De Koninck-Ivié [4]. For 0 <t <1 and Re s > 1 we have
(4.2)
oo

ztB(n,Q)—B(n,Q)n—a - H(l +p—a e tp —2s t2pp—3a i )H(l —a)—l
n=1 PEQ PEQ

e H(l o) [T+ (@ - 1)p7 4 (8% - t”)P'a’ ) = ((8)Gq(s, 1),

PEQ

where for Re s > 1/2 the function Gg(s,t) has the Dirichlet series representation

oo
Gq(s,t) = E go(n,t)n™%,
n=1
since uniformly in 0 <t <1

(4.3) 3" lga(n, b)) < &2

n<z

From the product representation (4.2) it follows that gq(n,t) is multiplicative
function of n satisfying gg(n,t) = 0 and

-1 < go(p*,t) <0 (a>2),
which easily implies (4.3). From (4.2) and (4.3) we obta.m
(4.4)
DB atisadimapnis Lo R PETTE RS ] =z Y gq(n,t)/n+0(Y_ lgq(n, t)l)
n<z n<z n<z n<z

Fo(t)z + O(z'/?),
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uniformly for 0 < ¢ < 1, where

Fo(t) = Go(1,0) = [] (1 # f:(t”("") = t”("'z))p"‘)

PEQ k=2
and therefore
(4.5) Fo(0) = [ (1 - »72).
PEQ

Let T be the set of numbers n such that B(n,Q) = B(n,Q), and let x7(n) be
the characteristic function of 7. Then T consists of numbers n which have no
prime factors from @ (in which case B(n,Q) = B(n,Q) = 0), or of numbers n
all of whose prime factors from @ exactly divide n. Thus for Re s > 1

Y oxr(mn~ = [Ja+p) [T =" =) [T - p7).
n=1

PEQ PEQ PEQ
A simple convolution argument gives then, in view of (4.5),
(4.6) s 1= xr(n) = Fa(0)z + O(a'/?).
n<z,B(n,Q)=B8(n,Q) n<z
From (4.4) and (4.6) it follows that, uniformly for 0 < ¢ < 1, we have
E’,B(n,o)—n(n,o)-x & 5 B(n.Q)-6(n,Q)-1
(4.7) n<z n<z,B(n,Q)#6(n,Q)
= z(Fq(t) — Fo(0))t~! 4+ O(z'/2t™1).

Now we integrate (4.7) over t from 7 = n(z) = z~2/3 to 1. This gives

’ 1 - n(z) 5 1 % _d_t 5
z (B("aQ) -B(n,Q) B(n,Q)- ﬂ(n,Q)) s "’/n (Fo(t)—Fq(0)) : +0(z"/*log ),

n<z

and on simplifying (4.1) follows with

4@ = [ (Fa(t) - Fa()-

We turn now to the problem of local densities of B(n,Q) - A(n,Q). A
nonnegative, integer valued arithmetic function f(n) possesses local density dj
if, for a given integer k > 0,

di = lim z7! Z 1

z—00
n<z,f(n)=k
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exists. In the case of the function f(n) = B(n,Q) — B(n, Q) local densities exist
for any k, although it is easy to show that dj = 0 for almost all k. More precisely
we shall prove

Theorem 4. For every integer k > 0 there erists a constant dy =
di(Q) > 0 such that uniformly in k '

(4.8) _ Z 1=diz + O(acl/2 log z).
"S-“-B("-Q)—ﬁ(ﬂ»Q)=k

Proof. The function f(n) = B(n,Q) — B(n,Q) is an s—function in
the terminology of A. Ivi¢ and G. Tenenbaum [14]. Namely every n can
be written uniquely as n = gs, (¢,8) = 1, where ¢ = ¢(n) is squarefree (i.e.
p%(g) = 1) and s = s(n) is squarefull (s = 1 or p?|s whenever p|s). The function
f(n) is then an s—function if f(n) = f(s(n)) for every n. Thus from (1.6) of [14]
it follows that (4.8) holds uniformly in k with the error term O(z!/?log? z). The
simplest way to improve this to O(z'/2log z) is to follow the proof of Theorem
3, supposing this time that ¢ = €' with 8 real. Then it is seen that (4.3) will be
replaced by

(4.9) 3" loa(n,6) < =/ log,
n<z
since now we have |tP — 1| = |e"? — 1| < 2, while for 0 < ¢t < 1 we had

—1 < t? — 1 < 0. Consequently we now have go(p, e*’) = 0 and |go(p®, e")| < 2

for a > 2, hence
> _lga(n,e”) < Y g(n),

n<z n<z
where for Re s > %
oo
(4.10) Z g(n)n~* = H(l +2p72 4 2p73 4 .. ) = (}(28)H(s), -
n=1 ‘ 4

and H(s) is a Dirichlet series which is absolutely convergent for Re s > 1. Hence
a convolution argument based on (4.10) easily yields (4.9). Therefore we shall
obtain

(4.11) D UBQ=AnQ) = Fo(e®)z + O(2/?10g 2)

n<z



On Large Additive Functions over Primes of Positive Density 115

uniformly in 6. If one integrates (4.11) over 6 from 0 to 27 then (4.8) follows

immediately with
1 [2 PRRr
di = 5 X Fo(e%)e™"%de,

since for any integer m one has
27 . '
imé . 27 ifm= 0,
/0 S { 0 ifm#0.
Note that the constant A(Q) in (4.1) may be written as

A@ =3 %

k=1

5. Sums of reciprocals

It is known (see [8], [9], [13], [16]) that sums of reciprocals of 3(n) and
B(n) behave similarly as the sum of reciprocals of P(n) (see (1.5)). In particular
T. Xuan [16] proved that

(log log log z)?
(5.1) )3 [3( ( +O( loglog z ))2<¥<z P(n)

2<n<z

for some constant D which satisfies ; < D < 1, and (5.1) remains valid if (n)
is replaced by B(n). Hence in view of (1.4) it is reasonable to expect that

(5.2) Z B Q) (DI(Q)+O (ggl—gg—z)) Z p(n Q)

and

69 Xgag = (2 @+0 (=) Z(Imlv)

n<z

hold with 0 < D3(Q) 5 D,(Q) < 1. The asymptotic formulas (5.2) and (5.3)
appear to be hard, and at present I am unable to prove them . They may be
put into the equivalent forms

(54) Zﬂ(n Q) " (”‘(Q“ (losllogz)) (g =)
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and

(5.5) . Z B(n Q) " ("2(Q)+ (logllogz)) (10811)6’

n<lz

respectively. In (5.4) and (5.5) we have m1(Q) = D1(Q)n(Q) and 72(Q) =
D2(Q)n(Q), where n(Q) is the constant appearing in (1.4), so that 0 < 73(Q) <
m(Q) < n(Q)-

The result that will be proved involves reciprocals of P(n,Q) and is the
following generalization of (1.4).

Theorem 5. Leta > 0 be real and b a fized natural number, and let
' 1
5.6 Fo(z;a,b) = R
(5.6) sEab= 3 moos
n<z,P(n,Q)ln

where Y’ denotes summation over those n for which P(n,Q) # 0. Then there
is a constant C(Q) > 0 such that
(5.7)

D = lo(P(m)) 1 z
Fo(z;a,b) = C(Q) Z ,Q,,,T(m) (1 +0 (loglogz)) (log z)?’

m=1,P¥(m)|m,P(m)eQ

where

o= ]I (1—%»

P<y,pEQ

Proof. Follows on the lines of the proof of (1.4) in [3]. Note that the
series in (5.7) is convergent, since
i lo(P(m))
mPe(m)
P(m)>z, P“(m)lm P(m)eQ

S E mPa(m) Epa+l Z

P(m)>:c p>z P'l(n)<p
= OSP
= Z potl H(l . —) < Zpa+1 ;E’
p>1: q<p p>z

and a > 0 by hypothesis. The result of Theorem 5 is to be contrasted with the
corresponding result for sums of 1/P*(n). A.Ivié and C. Pomerance [13]
proved a result which implies, for » > 0 fixed,
(5.8)

S 1/2 log log log =
Z ) - T exp { (2rlog z loglog z) (1 +0 (—loglogz g

2<n<z
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The method of proof can be easily adapted to yield an asymptotic formula for
the sum

(5.9) Fmew= - ¥ ‘me,

2<n<z,P(n)|n

which will be of the same type as the formula in (5.8). The sum in (5.9) is
the analogue of the sum in (5.6). But it should be observed that changing a
and b in (5.6) only affects the constant in (5.7), whereas such a change in (5.9)
changes the shape of the exponential factor ( of the same type as in (5.8)), hence
it changes the order of magnitude of the sum in question. A true asymptotic
formula for the sums in (5.8) and (5.9) ((5.8) gives an asymptotic formula only
for the logarithm of the sum) can be obtained by the method of [8], where the
case 7 = 1 of (5.8) is worked out in detail.
Returning to the proof of (5.7), let z = (logz)?/*. Then we have

(5.10)
' 1 1
Fo(z;a,b) = Z m'i'o (zzp—a:—l-))
n<z,Pb(n,Q)|n,P(n,Q)<z,P(n,Q)<P(n) p>z
z
= Hq(z;a,b)+0 ((log:c)5 loglogz /)’
say, where
' 1
mbe ol

n<z,Pb(n,Q)|n,P(n,Q)<2,P(n,Q)<P(n)

Here we used (5.8) (with r = a) to estimate the contribution of those n for which
P(n) = P(n,Q), and this contribution is trivially absorbed by the first O-term
in (5.10). If P(n,Q) < P(n), then n = mr with p(r) > P(m) = P(n,Q), wher
p(r) is the smallest prime factor of r, and r has no prime factors from @, which
is denoted by (7,Q)=1. This representation is unique, so that

Ho(3;a,b) = ) . D L.

25m5=.P(m)eQ,Pb(m)|m,P(fﬁ)5z Pe{m) r<z/m,(r,Q)=1,p(r)>P(m)

Now the inner sum in this expression is evaluated just as in the proof of the
Theorem 3 of J.- M. De Koninck [3]. The rest of the proof is on of the same
lines, with the appropriate modifications, so that there is no need to repeat all
the details. :
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6. Quotients of B(n,Q) — B(n,Q)

There exist several asymptotic formulas involving the functions P(n,@Q),
B(n,Q) and B(n,Q) that appear interesting. In particular, one could try to
evaluate sums of the six different quotients f(n)/g(n), where

f,9 € {P(n,Q),B(n,Q), B(n,Q)}-

In the case of {P(n), 3(n), B(n)}, such evaluations were made by P. Erd s and
A.1vié [6]. In the case of sums of B(n)/B(n) one has

(6.1) E B(n) =z 4+ O{z exp (—C(log z loglog z)'/%)} (C >0),
2<n<:

and T. Xuan [16] further refined (6.1).
We shall deal here only with the analogue of (6.1) for B(n,Q)/8(n,Q)
and prove

Theorem 6.

'B(n,Q) _ (zloglogx)
6.2 + 0 S K,
i L mQ) (ogz)’ )"
where 3" denotes summation over those n for which B(n,Q) # 0.
Proof. Note first that, by using Lemma 5 of J. - M. De Koninck [3],
we have E
3 N refEber Y

n<lz n<z,(n,Q)>1 n<z,(n,Q)=1
z(1 4 O(log™*? z)).

To prove (6.2) it clearly suffices to prove

(B(n,Q) — B(n, Q) _ zloglogz
6.3 < :
Ca) ; B(mQ) (log 2)?
Again let n = g¢s, (g,8) = 1, where ¢ = ¢(n) is squarefree and s = s(n) is
squarefull. We have

(B(n, Q) = BlmQ) . ' e
2 ﬂ(nQ) DI D IE

n<z
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where in Y’ we have ¢ < z'/2, and in 3" we have s < z!/2, since n = s¢ > z
is impossible. To estimate Y’ and 3" note first that, in view of E 1< z'/?,

s<z
we have
= ) (Ble)=B()) = ¥ uip= 23" pr Y}
(6 4) n<lz p2s<z,a>2 pe<z,a>2 s<z/p°
’ SN 2.
< Z p(pa) < IOgZ.
p?<z,a>2

Thus using (6.4) we obtain

'B(s) — B(s) z
Z < Z Z (sq Q) Z ﬂ(q,Q)qlog( -)

q<z1/? s<z/q q<z1/2

T z: ! 1 < z ( 1 +/.1: t ) < T
log:znSzl e nP(n,Q) ~ logz \log’z 2 tlog’t log® z

since 0 < § < 1, and where (1.4) and partial summation were used. Similarly
using (1.4), (6.4) and partial summation it follows that

Z// - Z (B(s) ﬂ(S))Z ﬁ(q,Q)

s<zl/? q<a:/s B() B(s)
Bs i = T S) — S
< L O < T

P Tz ( 1 _{_/z dt )<zloglog:c
logsz log z o tlogt log‘s:c :

Combining the bounds for 3>’ and 3" we obtain the assertion of Theorem 6.
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