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In the theory of the group algebras the following major problem has not been solved
yet: Is it true that the abelian group G is a direct factor of the group of normalized units of
the algebra K'G, for some field K of characteristic p > 0? In this work the current problem
is solved when G is an algebraically compact abelian p-group. The complement of the group
G is being described when the field K is perfect.

1.Introduction.

Let G be an abelian p-group, K be a field, charK = p > 0, R be a
commutative (abelian) ring with identity, U(R) be its multiplicative group, RG
be the group algebra of the group G over the ring R,and U(RG) and V(RG)
be the unit group and the group of normalized units (i.e. of augmentation 1 -
the coefficients sum to 1) in the algebra (ring) RG, respectively.

In this paper the group V(K G) is being examined when it is topological-
ly complete (quasi complete) or algebraically compact p-group. A full system
of invariants of V(RG) is given when G is an algebraically compact p-group
and R is an arbitrary ring of characteristic p > 0. The direct factor problem
for this group class is being solved. An invariant system for the topologically
complete group V(KG) is also obtained. Some topologically pure subgroups
of V(KG) are being described and the problem for the basic subgroups of the
normed unit group V(KG) is being discussed, too.

The work was supported by the National Fund "Scientific researches” and by the
Ministry of Education and Science in Bulgaria under contract MM 70/91.
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§I. Topologically complete abelian p-groups.

A subgroup H of the abelian p-group G is said to be topologlcally pure
in G, if it and its topologically closure (cover) Hg wf N (HGP") ([4], p.42) in
the group G are pure in G. e

Then the reduced abelian p-group G is called topologically complete
(quasi complete; [5], p.57) iff every its pure subgroup is topologically pure in G.
The abelian p-group G is called separable iff le ] N GP" = 1. Certainly
every topologically complete group is separable. ne

Thus, because H;/H = n (G/H)" = (G/H)*, then Hg is pure
in G iff H is pure in G and (G/H )?“ is a divisible group. Finally H is
topologically pure in G iff (G/H)?" is a divisible group and H is pure in G
([4], p-137, Lemma 26.1).

A subgroup C of the abelian p-group M is called balanced if it is both
nice and isotype ([5], p.94).

Lemma 1 . If C is balanced in the p-group M, then for every ordinal
number T:

(1) (M/C)" = MP'/CP”

Proof. We have that C is nicein M and therefore M?" — (M/C)?" =

(CM?P")/C is the natural map with kernel C N MP" = C?". The lemma is
proved. [

Lemma 2 (May [7]). If H is isotype in G, then GV(K H) is balanced
in V(KG).

Lemma 3. The abelian p-group G is balanced in V(KG).

Proofl. Wehave GNV? (KG)=GNV(K? G*") = GnG? =G*",
where the first equality follows from [3]. Hence G is isotype in V(KG). Let K
be the algebraic closure of K. Following May [6], G is nice in V(KG), hence
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G is balanced in V(KG). Finally from ([5], p.96), G is balanced in V(KG),

since V(KG) < V(KG). The lemma is true. - ]
P roof 2. Follows immediately from Lemma 2 at H = 1. The proof is
completed. . =

Lemma 4. Let F< R and B< A, A is an abelian group. Thus

(j)) RA=FB iff R=F and A= B.

(ij) V(RA)=1 iff A=1.

(iij) If B # 1, char R = p and A is p-torsion, then V(RA) = V(FB)
if R=F and A= B.

(iijj) V(RA) = V(RB) iff A= B.

Proof. Evidently. -

Lemma 5. The group V(RG) is separable iff G is separable.
Proof. Let G = 1. Consequently (see [3]), V?“(RG) = V(R?*G*") =
1 by Lemma 4, where R** %/ | RP". The lemma is proved. =

n<w

Lemma 6. Let H < G. The group V(RH) is isotype in V(KG) iff
H is isotype in G.

Proof. Certainly from Lemma 4, HNG?" = H?" iff V(RH)NV? (RG) =
V(RH)NV(RP"GP") = V(RP"(HNG?")) = V(RP"H?" ) = VP (RH). The lem-
ma is true. w

We know that, if C is a nice subgroup of the separable abelian p-group
M, then M/C is separable. Indeed (M/C)*" = (CM?*)/C =1 (see [5], p.91,
Lemma 79.2), since M?" = 1.

Theorem 7. Let G be a separable abelian p-group and H < G. The
group V(K H) is topologically pure in V(KG) iff H is topologically pure in
G.

Proof. Let H be pure in G. Then H is isotype in G. We will prove
that:

(2 (V(KG)/V(KR))” = (G/H)".
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Evidently, because H = G N V(K H), then (G/H)*"~ (GV(KH)/V(KH))*".
By Lemma 2 and ([5], p.96) we see that GV(KH)/V(KH) is balanced in
V(KG)/V(KH). Hence from Lemma 1,

(V(EG)/V(KH)Y [(GV(KH)/V(KH)" = (V(KG)/GV(KH)Y" =1,

since GV(KH) is nice in V(KG) and by Lemma 5, V(KG) is separable.
Finally (V(KG)/V(KH))*" = (GV(KH)/V(KH))* 2 (G/H)* . Obviously
from Lemma 6, H is pure in G iff V(K H) is pure in V(KG). Thus the
theorem follows immediately in view of formula (2). This proves the theorem.

Proposition 8. Let A be an abelian group and R be a commutative ring
with identity. If A = B x C, then:

V(RA) = V(RB) x V(PC).

V(RA)/V(RB) = V(P(A/B)), where P = RB.

Proof. Bacause A = B x C, then RA = (RB)C = PC. There
fore U(RA) = U(PC), i.e. V(RA) x U(R) = V(PC) x U(P) = V(PC) x
V(RB) x U(R). Hence V(PC) x V(RB) = V(RA) x U(R)/U(R) = V(RA)
and V(P(A/B)) 2 V(PC) = V(RA)xU(R)/V(RB)xU(R) 2 V(RA)/V(RB).
This completes the proof of the proposition.

The abelian ring R of prime characteristic p with identity is called
perfect ( p-perfect) if R? = R (i.e., every element is a p-th power), R? =
{r?|r € R}. [
Lemma 9.

() RG is perfect iff R is perfect and G is divisible.

(ii) V(RG) is divisible iff R is perfect and G is divisible.

Proof. (j) Indeed RG = (RG)? = RPGP? iff R = R and G? = G from
Lemma 4.
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(jj) We may assume G # 1. If R = R? and G = GP?, then VP(RG) =
V(RPG?) = V(RG) (see [3]), i.e. V(RG) is divisible. Conversely, let now
V(RG) = VP(RG), i.e. V(RG) = V(RPGP) [3]. Consequently by Lemma 4,
R = R? and G = GP. The lemma is proved. [
Theorem 10. Let G be an abelian p-group, H < G, H be a divisible

group ( more generally, a direct factor of G ) and R be at commutative ring of
prime characteristic p with identity. The group V(RH) is topologically pure in
V(RG) iff H is topologically pure in G and RP” is perfect when (G/H)*" # 1
( and H?" is divisible in the more general case ).

Proof. We know that H is a direct factor of G. Hence from Proposition

8, we have:
(5) (V(RG)/V(RH))" = VP ((RH)(G/H))=V((RH)"(G/H)™),

where the second equality follows owing to [3], since charRH = p. Moreover
(RH)* = RP’HP” = RH is a perfect ring and thus the statement follows by
virtue of (5), Lemma 6 and Lemma 9. So, the theorem is true. @

If A is an abelian p-group, then under a final rank of A we must un-
derstand the cardinal number fin r(A) = '{g‘i"’ r(AP") ([4], p.177).

Proposition 11. Let G be an abelian p-group. If the group V(KG) is topo-
logically complete, then the group G is topologically complete and finr(G) <
2%,

Proof. 1. Because every topologically complete group is separable,
then G is a separable group. Suppose H is pure in G,i.e. V(K H) is pure in
V(KG) from Lemma 6. Hence V(K H) is topologically pure in V(KG),i.e. H
is topologically pure in G by Theorem 7. Therefore G is topologically complete.
Let us assume that fin 7(G) > 2%. By ([5], p.60, Theorem 74.8) G is torsion
complete. Since G is pure in V(KG) by Lemma 3, then V(KG) = G x M
(5], p-25, Theorem 68.4). But G is an unbounded group and according ([10] or
[1]), V(KG) is not a torsion complete group. Thus using ([5], p.60, Corollary
74.6) we derive that M is a bounded group. Therefore V(KG) is a torsion
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complete group, because G is torsion complete ([5], p.29, Exercise 8), and this
is a contradiction. This proves the proposition. -
Proof. 2. Since Lemma 3 is true, the proof is analogous to this in ([1],
Proposition 3). This proves the proposition. I
Propositios 11 implies that if V(K G) is topologically complete, then G
is topologically complete, but it is not unbounded torsion complete. Moreover,
the following is actual:

Remark12. For R a ring of char R = p, we have obtained that V(RG)
is topologically complete (in particular, torsion complete; see also [2]) iff G is
bounded, but the proof we will give elsewhere.

From Proposition 11 follows that if G is an unbounded torsion complete
group, then V(K G) is not a topologically complete group. So, the next has a
key role:

Problem 138. If G is a torsion complete abelian p-group, then what is the
structure of the group V(KG)? Is it true that V(KG) is a pure complete

group ?

§II. Algebraically compact abelian p-groups.

If W is an abelian group, then suppose Wy and W, are the maximal
divisible subgroup of W and the reduced part of W, respectively, and L is
the maximal perfect subring of the ring R. The group W is called reduced if
Wi=1.

Lemma 14. The group V(RG) is reduced iff G is reduced.

Proof. The maximal divisible subgroup of V(RG) is V(LG4) (8],
i.e. V(RG)a =V(LGg). But Gq = 1,ie., V(RG)s =1 by Lemma 4. Hence
V(RG) is a reduced group. The lemma is shown. (]

The abelian ring R of prime characteristic p with identity is said to
be weakly perfect iff .R”'. = R**' for some i € N, i.e. R is perfect for this
i€ N.

Apparently every perfect ring is weakly perfect and the weakly perfect
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ring R is perfect when it is a ring without nilpotent elements. Really let a € R.
Thus a* = b**', b€ R and (a—b?)* =0,i.e. a=0b? and R = RP.
Lemma 15. The group V(RG) is bounded iff G is bounded.

Proof. Clearly G** = 1 for some k € N iff V?*(RG) = V(RF*G*") =1
by Lemma 4 (see [3]). So, the lemma is verified. (]

We know that every divisible and every bounded groups are algebraically
compact ([4], p.187). Therefore following Lemma 9 and Lemma 15, we obtain

Theorem 18. Let G be an abelian p-group and R be an abelian ring with

identity of prime characteristic p without nilpotent elements. Thus

(j) If G is reduced, then V(RG) is algebraically compact iff G is alge-
braically compact.

(ij) If G is not reduced , then V(RG) is algebraically compact iff G is
algebraically compact and R is perfect.

Proof. (j) From Lemma 14, V(RG) is reduced. Therefore ([4], p.199,
Corollary 40.3), V(RG) is algebraically compact iff V(RG) is bounded, i.e. iff
G is bounded by Lemma 15.

(jj) Let G = G4 x G, . Hence by Proposition 8, we have the isomorphism

(6) V(RG) = V(RG4) x V(PG,), P = RGj.

We know that ([4], p.199, Corollary 40.3) if G is algebraically compact, then G,
is bounded, i.e. in view of Lemma 15, V(PG,) is bounded. Besides V(RGq)
is divisible owing to Lemma 9. Finally ([4], p.189, Corollary 38.3), V(RG) is
an algebraically compact p-group.

Let now V(RG) be algebraically compact. Consequently ([4], p.189,
Corollary 38.3), V(RG,) and V(PG,) are algebraically compact. But V(PG,)
is reduced and immediately it is bounded, i.e. G, is bounded. Hence G is
algebraically compact. Let L be the maximal perfect subring of the ring R.
Then V(RGq4) = V(LGq) X V(RG4)r, where V(LGq) = V(RGa)a. Let us
assume that does exist an element 0 # z € R : z?° € L, for each s € Ng =



168 Peter V. Danchev
N U {0}. Denote
(7 Z(p™) = (a0, @1,..-18ny... |ao =1, @b, = ap—1, Vn € N).

Evidently the elements a, have orders p", i.e. o(a,) = p", i.e. al’.n =1, and
a?’' #1if 0 < s < n. Now we set the sequences (2n)22yy Zn =14+ 2(1 — a,)
and (¥n)S21,Yn = 2,V (LGy). Hence z, € V(RGy) and y, € V(RG4)/V(LGa)

since Gg = [] Z(p>), where m is a cardinal number. Besides 2% =1 and
m

22 = 1+z”'(1—aﬁ') # 1 if 0 < s < n, because a?’ # 1 and (2" = 0iffz = 0).
Thus o(z,) = p". Analogiclly o(y,) = p". Infact, ¥ = 2% V(LGg) =1 and
let ¥5 = 2B V(LGy) = V(LGy), ie. 28 = 1+ 2P'(1 —ab) € V(LGa),
ie. (14 z*") —2?"a® € V(LG,). Finally zP° € L, but this is not true.
Therefore 35 # 1 if 0 < s < n and the sequence (yn)2%, is unbounded.
Consequently V(RG4), = V(RG4)/V(LGy) is unbounded and V(RGy) is not
an algebraically compact group which is a contradiction. Then for each a € R,
there exists n, € N: a?™® € L. Finally R is perfect since a?™* € L = LP",
ie. a®"* =b*"* be L,i.e. a=b,ie. R= L. The theorem is verified. ©

Now we shall deneralize the above theorem using a different method of
proof,namely:

Theorem 17. Let G be an abelian p-group and R be a commutative ring

with identity and prime characteristic p.

(i) If G is reduced, then V(RQG) is algebraically compact iff G is alge-
braically compact.

(ij) If G is not reduced, then V(RQG) is algebraically compact iff G is
algebraically compact and R is weakly perfect.

Proof. We well-know that, V(RG) = V(LG4)xV(RG),, where V(LGYy) :
V(RG)q (see [9]) and L is the maximal perfect subring of R. Furthermore,
V(RG) is algebraically compact iff V(RG)/V(LGq) is bounded (cf. [4]), i.e.
iff V(RP'GP') = V(LG,) for some i € N. This equality is equivalent by Lem-
ma 4 to R” = L and G* = G4, when Gq # 1, i.e. to R? = RP*' and



Normed Unit Groups... 169

1= (G’/Gd)"‘ = G’r’i. Hence V(RG) is algebraically compact iff (jj) holds (see
[4]), when G is not reduced.

If G is reduced, then V(RG) is reduced by Lemma 14 and so V(RG)
is bounded, i.e. G is bounded by Lemma 15, i.e. G is algebraically compact
(see [4]). So, the theorem is true. [ ]

A full describtion of the algebraic compact p-components of U(RG)
when R is an arbitrary abelian ring with identity and prime characteristic p
and G is an arbitrary abelian group, is obtained in [3]). Let K be a perfect field.
Thus by W. May [6], V(KG) is simply presented iff G is simply presented.
Problem 18. Let G be an abelian p-group.

(j) If G is reduced, then V(RG) is simply presentéd iff G is simply
presented.

(ij) If G is not reduced, then V(RG) is simply presented iff G is simply
presented and R is weakly perfect.

Corollary 19. Let G be an abelian p-group and R be a perfect commutative
ring of prime characteristic p with identity. The group V(RG) is algebraically
compact iff G is algebraically compact.

Theorem 20. (DIRECT FACTOR). Let G be an algebraically compact

abelian p-group. Then G is a direct factor of V(RG). If R is a weakly perfect
ring, then the complement is an algebraically compact p-group.

Proof. Analogous to Lemma 3 it follows that, G is pure in V(RG).
Thus G is a direct factor of V(RG) ([4], p.187), i.e., V(RG) = G x M.
Let G = Gaq x G,. Hence G, is bounded ([4], p.199, Corollary 40.3). By
Proposition 8, we conclude V(RG) & V(RG4) x V(PG,), where P = RGy.
Using Lemma 15, V(PG,) is bounded. Let R* = RP*' for some i € N.
Therefore R?' = (RP')P, i.e. R = L is the maximal perfect subring of R.
Fufther V(RGq) = V(LG4) x V(RGqg),, since V(RGa)a = V(LGga). Con-
sequently V(RGg) = V(RP'Gq) x V(RGy4), and VP (RGy) = V(RP'Ga) =
V(RP'G4) x VP (RGq),. Hence VP (RGa), = 1, ie. V(RGa), is bounded.
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Finally by ([4], p.189, Corollary 38.3), V(RG4) and V(RG) are algebraically
compact. Besides M is algebraically compact as a direct factor of V(RG) ([4],
p.187). This completes the proof of the theorem.

Theorem 17 implies that if G is unbounded algebraically compact and
R is not perfect then V(RG) is not algebraically compact.
Problem 21. If G is an algebraically compact abelian p-group then whether
when V(RG) is a simply presented p-group ? What is the structure of V(RG) in
this case? Besides we note that the following are fulfilled: V(RG) = 1+I(RG;G)
and V(RG)[p] = 1 + I(RG; G[p]) ® M[R(p); '(G/G[p], where I(RG;G[p]) is a
relative augmentation ideal of RG with respect to G[p); M(R(p); "(G/G[p]) 4
{2 secrp) To(1 — 9)Irg € R(p)} and the other notations are standard.

§III. Basic subgroups of abelian p-groups.

Theorem 22. Let G be an abelian p-group and B < G. If V(K B)
is a basic subgroup of V(KG), then B is a basic subgroup of G. The oposite
statement is completely wrong.

Proof. Certainly by Lemma 6 it is enough to prove only that if V(KG)/V
is a divisible group, then G/B is a divisible group and that the opposite state-
ment is not true.

Evidently because B = GNV(KB), then G/B & GV(KB)/V(KB) <
V(KG)/V(KB). But V(KB) is purein V(KG),i.e. from Lemma 6, B is pure
in G. Therefore by Lemma 2, GV(K B) is purein V(KG),i.e. GV(KB)/V(KB
is pure in the divisible group V(K G)/V (K B). Finally G/B is a divisible group.

Let now B is nice in G. Therefore B is a balanced basic subgroup of
G, i.e. B is a direct factor of G, i.e. B = G, ([5], p.99, Exercise 9 and p.92,

Exercise 2). Then by virtue of Proposition 8, we obtain:
(8) V(KG)/V(KB) 2V ((KB)(G/B)).

If we assume that V(K G)/V(KB) is a divisible group, then V ((K B)(G/B))
is a divisible group, i.e. G/B is a divisible group and KB is a perfect ring
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owing to Lemma 9, as G # B. Again by Lemma 9 follows that, B is a divisible
group and this is a contradiction (B#1). Hence even if we have a perfect ring,
the group V(K G)/V(K B) may not be divisible. This proves the theorem. =

Theorem 23. Let G be a reduced abelian p-group and B < G. The
group V(K B) is a basic subgroup of V(KG) iff B = G and G is a direct
product of cyclic groups.

Proof. Let V(KB) be basic in V(KG). Then by Theorem 22, B
is basicin G. If B = 1, then V(KG) is a divisible group and from Lem-
ma 14, V(KG) = 1,ie. G =1 and so B = G. Thus let B # 1. Cer-
tainly V(KG)/V(KB) — V(KG)/GV(KB) 1is an epimorphism and s-
ince V(KG)/V(K B) is a divisible group, then V(KG)/GV(K B) is a divisible
group. Lemma 14 implies that, V(KG) is a reduced group and consequently
V(KG)/GV(KB) is a reduced group by Lemma 2 and ([5], p.92, Exercise 2).
Finally V(KG) = GV(KB). Thus G = B. Indeed let 1 # g € G and g ¢ B,
ie. ge G\B. If 1 #0b¢€ B, then zgp =1+ g—b € V(KG) is a canonic
element and 1+ g—b=g'.(a1by +---+ atby) € GV(KB), ¢' € G, by,...,b €
B; a;,...,a; € K. Hence ¢’ € B and g € B,i.e. G = B. But besides, [8] and
[2,3] imply that V(K G) is a direct product of cyclic p-groups iff G is a direct

product of cyclic p-groups. The theorem is true. ™

Lemma 24. Let A be an abelian p-group and B < C < A as C is
pure in A. If B is a basic subgroup of A, then B is a basic subgroup of C.

Proof. Really B is purein C,since B is purein A. Let now A/B be
divisible. But C/B is pure in A/B ([4], p.137, Lemma 26.1) and hence C/B

is divisible, so B is basic in C. So, the lemma is true. [}

Theorem 25. Let G be an abelian p-group and 1 # B < G,. The
group V(K B) is a basic subgroup of V(KG) iff B = G and G is a direct
product of cyclic groups.

Proof. By Theorem 22, B is basic in G. Let G = G4 X G,. Hence
G, is pure in G and owing to Lemma 6, V(KG,) is pure in V(KG). Thus
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from Lemma 24, V(K B) is basic in V(KG,), i.e. Theorem 23 does imply that
B = G, . Finally G = G4 x B. Similarly to Theorem 22, if B # G, then

9 V(KG)/V(KB) =V ((KB)(G/B))

and therefore Lemma 9 is applicable to obtain V(K G)/V(K B) is not a divisible
group. This is a contradiction and the theorem is true. [

R em ark 26. Suppose B’ < G,. Futhermore B’ is basic in G iff B’
is basic in G,. In fact, by Lemma 24 the necessary is valid. Now, let B’ be
basic in G,. Hence B’ is pure in G, since G, is pure in G. Moreover, the groups
G,/B' and G/G, & G/B’'|/G,/B’, are divisible, therefore G/B’ is divisible [4]
and we are done.

As a final, we shall announce that if B is basic in G and R is perfect, then
1+ I(RG; B) is basic in V(RG)(cf. [3]; this is proved also by N.Nachev). But
if R = R”Hl(i € Np) and RP' has no nilpotens, then 1 + I(RG; B) + R(p')G is
basic in V(RG). The proof will be given elsewhere.
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