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In the present paper we continue the study of P.V. J an jga v a from [1] on Sweep’s

method for solution on tridiagonal systems.

(1)

We shall start with the scalar case.

1. Scalar case
Let it be given the following special linear tridiagonal system

bzy + czq =d;
azy + bzxg + cz3 =d,

aZp_1 + bz, = dy,

As known [2] the Sweep’s method for solution of the system (1) can

be applied with two steps: forward and backward. The forward step is to
transformate the first (n — 1) equations of (1) in equations of the form

Ty = mz2+ B

T2 = azz3 + f

Tp-1 = Qpo1Zn + Bn-1
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where the coefficients a; and §; are obtained by the formulas

c di — afi—y

SE= T ai_1a+ b’ Bi = a;_1a+b’

where i = 1,2,...,n—1, agp = Bo = 0.
The backward step is to find z,, £,—1,...,21 by the formulas

. == dn — afn
"7 ap_1a+b

Tp-1 = On—1Zn + Pn-1
Ty = oqz2+ P
Now let the matrix of the system (1) is with dominant diagonal, i.e.
(8] > |a| + |e|

also we must suppose ac # 0. (In the other case the system can be solved
immediately).

In this case [2] the sequence {a;} has the following properties:

a)|lej] <1 fori=0,1,2,..

b) a; - a fori— oo
where aa? + ba + ¢ = 0.

Let us now study the speed of convergence of the sequence {e;}. For this
aim we consider the following iteration process

(2) a; = —c(ai1a+ b)7! (i=1,2,3...)

with @; = a + ¢ (¢ = 0,1,2...). Then from (2) we obtain that ¢; satisfy the
difference equation

(3) € = agéi-1
§ B St

= an?
P q =aa’/ec.
To solve (3), first we are to study the case, when
(4) laa?/c| = 1

i.e. aa?/c = 1. But from the last equality we obtain F1+ba/c+1 = 0 which
is possible only when

(5) aa’/c = 1.
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Here we obtain that ba + 2¢ = 0, or @ = —2¢/b. Putting this value for a
in (5), we find that 4ac = b2, from here we obtained that a and ¢ have one and
the same sign. From the other hand

la| + |e| < [b] = 2V/]alle| < |a] + [e].

From this relation we receive a = c¢. Therefore a = £1. Now if (4) holds,
ie. | =1, a = ¢, a =+1. By the same way in this case from (3) we receive
the following two difference equations

G __Gm1
YT 14 €60

€ =
i 1—6.'_1,

corresponding to the both values a = F1 with the following solutions

k k

(6) € = —m; € = i—ﬂ_z_

correspondingly where k is an arbitrary constant. When we use ¢¢ = —a, from
(6) we receive k = —1 or k = 1 respectively. Then (6) takes the form
1 1

— (i=0,1,2,..)

™) “=-Ty9 ST 14

If laa?/c| # 1, it is easy to see that |g| = |aa®/c| < 1. In this case we
receive
g'a

T1t+g+t¢+.t g

(8) € = (¢=0,1,2..).

for the solution of (3).
The relation (7) shows that the bounds, obtained by Janjgava [1] for
le;] when g = 4|al.|c|b=2 = 1 are exact, the relation (8) gives better values for

|€:l- '
2. Block case

Let it be given the following nonsingular quasitridiagonal system

BX; +CX, =Dy
AX1+BX;+CX3 = D,
() e

.......................................

AX,_, + BX, = D,
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where A, B, C are m X m matrices, X; and D; are m X 1 matrices.
By the first step on Sweep’s method the first p — 1 equations of (9) are
transformed in the following form

X1i=LiXs+1
X2=LX3+Y;

----------------------

Xp—l = /Lp-lXp + Yp—l
where
(10) Ly = —(ALg-1 + B)™'C, Yi = —(ALk-1 + B)"Y(Di — AYi—,)

and k=1,2,...,p; Lo =0, Yo =0.
In [1] P.V. Janjgava proved the following

Theorem 1. Let B be an nonsingular matriz and || - || be a matriz
norm, with ||I|| = 1, where I is identity matriz. If

(11) g=4||B7'4|-||B7'C| < 1.
Then the matriz sequence
(12) Ly = (ALx-y + N)7'C

for k = 1,2,3,... and Lo = 0 is converging to the solution L of the quadratic
matriz equation
AX? 4+ BX + C = 0 with the estimate

¢
e - 2 < TS 0E.

If in (11) we have only inequality, i.e. ¢ < 1, then

k
q
Ly - L|| £ +—————=||L]l-

Now we continue the Janjgava’s investigations for the block case. For
this aim we rewrité (12) in the following form

Ly = (PLi-1+ 1)7'Q
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with P = B-14,Q = B~1C.
In this case (11) takes the following form
(13) - g=4|P||-|Qll £1.
From Theorem 1 it follows that if (13) is satisfied, then the map
FX = -(PX + I)‘IQ

is defined in || X|| < 2||Q|| it has a fixed point L in the domain || X|| < 2||Q]|.
Now we are going to prove the following

Theorem 2. Ifq € (0,1) and
G = {X = n x nmatriz: || X|| < 2||Q|I}

then the map FX has no other fized points in G ezcept L.

Proof. First, we are going to show that X € G = FX € G (see [1]).
Indeed, let X € G, i.e. || X]|| < 2||Q||- Then

el

_ -1 -1 L. | E—
IFX1 = |(PX + D7'Q|| < |(PZ + D7 HQN < 51

el . _llel

S Toayp) - S T-172 - 2l

then FX € G.
Now we finish the proof showing that FX is a contacting map in G.
Indeed, if X,Y € G, then

IFX — FY|| = ||(PX + I)"'P(Y - X).(PY + I)7'Q||
<|lpx + 07| IR - Y = X1 [|(PY + D)7 - [1Qll

PRl q/4 q
< X -Y)|= —2L X =Y = —2—[IX - Y]
a=zppl-ame X Y= g ay X Y= gogElX =Y

Since ¢/(2 — ¢)? € (0,1), then we obtain that FX is a contracting map
in G, which is enough to see that F'X has a unique fixed point L in G. [ ]

Now with the suggestion det(PQ) # 0, we will obtain the following ana-
lytical equation of the error

€ = Ly — L.
For the iteration process

Ly = —(PLk—y + I)7'Q
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we have
(PLe-1+ 1Lk +Q =0
(PL+ P, , + I(L+ &)+Q@=0
(PL+I+P,_)ek+ Pex1L=0

By an inductive argument it is easy to see that for each ¥ = 0, 1,2, ..., we
have |ex| # 0. In this case we can put § = €; .
In the same way, we continue to investigate following differentce equation

Léy + b1 (L + P-l) +I=0
for &y, or
(14) Lép —b6p_1M+1=0

where
M = —(L+ P™).

In order to solve (14) it is necessary to find the general solution of the
homogeneous equation Lé; — 3 M = 0 and one special solution for the non-
homogeneous.

The general solution of homogeneous equation is

Ar = L~*CM*, k=0,1,2,..

where C is an arbitrary n X n matrix.
Now we are to find a particular solution of (14).
We search it in the following form

M = L_k-ICkMk.
After in (14) putting é; = £ we obtain
L*CiM* - L *Cr_yM* +1=0

Cir—Cr1+ LFM~* = 0.
From Cp = 0, we find

k
Ce=-)Y LM~

s=1
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After this one particular solution for (14) is

k
= - Z La—k—le—s.

s=1
For the general solution §; = Ag + 7% we find

k
6k — L-—kCMk _ Z Ls—k—le—s

=1

i.e.

k -1
€& = (L—kCMk _ Z Lc—k—le—a)
s=1

where C is an arbitrary matrix. After determining the solution from the condi-
tion €g = — L, we find finally

k
€& = __M—k (I+ ZLOM—:) Lk+l,

=1

where k£ = 0,1,2,...

The convergence property of the coefficients L ensures a possibility for a
modification of Sweep’s method, described from Janjgava [1], which is more
economic with respect of capacities and of the time of calculating, compared
with the usual Sweep’s method.

This modification can be described as follows:

Let we are to solve the linear system (9) by the Sweep’s method, for the
coefficients Ly converging to L. Moreover, let 7 < p — 1 is the smallest integer
such that Ly = L for k > 7 with accuracy €. In this case we should not calculate

L1-+1 = L1+2 = e = Lp-l = Lo
and for k > 7 + 1 we calculate by the formula Y}
Yi = (AL + B)"}(Dy — AYx—1)

where again we have an economy of calculating time.
The above modification was experimented in the scalar and block case.
The experimental results supported the theoretical scheme.
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