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In this paper we consider the maximization problem and the problems of differentia-
bility of m-convex and of p-convex functionals on Banach lattices of measurable functions.
Conceptually, this article is a continuation of investigations in [7-11].

0. Introduction

Let X be a Tykhonov space, C(X) be the set of all real-valued bounded
and continuous functions on X with the sup-norm. Let Bo(X) = C(X), and
inductively define B,(X) for each ordinal @ < w; to be the space of bounded
pointwise limits of sequences of functions in U{B¢(X) : £ < a}. The functions
in :

B, (X) = U{Ba(X): a <w}

are called bounded Baire functions (see: 4, 5, 6, 12, 16, 25, 28).

Foe every a < w; the space B,(X) is a Banach lattice.

Every bounded function f : X — R determines a maximization problem
which we denote by (X, f): find z9 € X such that f(zo) = max{f(z): z €
X}. A maximization problem (X, f) is called Tykhonov well-posed if every
maximizing sequence {z, : n € N = {1,2,...}}, i.e. lim f(z,) = sup{f(z) :
z € X}, converges in X. Hence, if z¢ is a solution of the Tykhonov well-posed
maximization problem, i.e. f(zo) = max{f(z): z € X},and {z,: n€ N}isa
maximizing sequence, then lim f(z,) = f(zo) and z, — 2o.

Let E be a Banach sublattice of B,,(X) and By(X) C E.

In the present paper we concider the following questions.
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QUESTION 1. When do the Tykhonov well-posed problems (X, f),
where f € E, form a ”big” (in the Baire category sence) subset of the space E?

QUESTION 2. When is the sup-norm in F Fréchet differentiable at the
points of a dense subset of E?

QUESTION 3. When is the sup-norm in E Gateaux differentiable at the
points of a dense subset or of a dense Gs-subset of E?
The case £ = C(X) was examined in [2, 5-11, 13-15, 17-24, 26-33].

The Question 1 for the spase E of upper semicontinuous functions on X
was considered in [32].
In particular, we consider the following questions.

QUESTION 4. When is C(X) a weakly Asplund space?
QUESTION 5. When is C(X) a GDS?
QUESTION 6. Let C(X) be a GDS. Is C(X) a weak Asplund space?

QUESTION 7. Is the class {X : X is compact and C(X) is a weak
Asplund space} finitly or countably multiplicative?

QUESTION 8. Is the class {X : X is compact and C(X) is a GDS }
finitly or countably multiplicative?

Well-posedness of optimization problems contains the following compo-
nents: existence of the solution; uniqueness of the solution; continuous de-
pendence of the solution on the data determining the problem. Generic well-
posedness means that the "majority” (in some concrete sence) of the problems
from a given class of problems are well-posed (see: [21, 3, 7-11, 13-15, 17-20, 22,
24, 26, 27, 29-33, 35-36]).

We state that the solution of the Question 2 and 3 depends only on the
Baire topology (in general, on the topology Tg) on the space X and the solution
of the Question depends on the prescribed topology on X too.

All spaces are considered to be Tykhonov. We shall use the notation
and terminology from [16, 31, 34]. In particular, 83X is the Stone-Cech com-
pactification of the space X, Cl X or Clx H denotes the clousure of a set H in
X, x(z, X) is the pseudocharacter of a point z in X, N = {1,2,...,n,...}. The
pseudocharacter of a point z in X is countable if {z} is a Gs-set of X.

The symbol R will denote the field of real numbers. The vector spaces are
considered over R. A normed complete vector space is called a Banach space.

A Banach algebra is a Banach space E which is also a ring such that it
satisfies the following conditions:
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1. (ax)y = z(ay) = a(zy) and zy=yzr for a€R, z,y € E;
2. llaz|| = |l ||zll, llzyll < llzllllyl| for a € R, z,y € E;

3. In E there exists a unit element 1 € E such that ||1|| =1and 21 = z for
every z € E.

Let E be a Banach algebra. For every a € R we consider & = al € E,
i.e. RC F and ||a|| = |a| for every a € R C E.

A Banach lattice is a Banach algebra E which is also a lattice satisfying
the following conditions:

4. if |z| < |y|, then ||z|| < ||y||, where |z|=zV(-z)=2zt+2",2zt =
zVv0 and z~ = —(zA0);

5.if |z|<|y|,and =z,y,z€ E, then z+4+z<y+z;
6. if |z| <|y|,anda > 0, thenaz < ay.

A functional ¢ : E — R on a Banach lattice F is convex if
plaz + (1 - a)y) < ap(z) + (1 - a)e(y)

for every z,y € E and a € [0,1].

A functional ¢ : E — R is sublinear if ¥(z + y) < %¥(z) + ¥(y) and
Y(az) = ay(z) for every z,y € E and a > 0.

Every sublinear functional is convex (see [31], [34]).

1. On m-convex and p-convex functionals

Fix a Banach lattice E.
A functional ¢ : E — R is called m-convex (monotonically convex) if it
satisfies the following conditions:

Ml p(z+a)=¢p(z)+a for z€ E and a€ R;
M2. p(nz) = np(z) for 2z€ E and n€ N;
M3. p(zVy)=e(z)Ve(y) for z,y€E;

Proposition 1.1. Every m-convez functional ¢ : E — R on E
satisfies the folloing conditions:

M4. ¢(0) = 0.
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M5. p(a)=a for a€ RC E;
M6. Ifz,y€e E and z <y, then ¢(z)< ¢(y);
Proof. Let b = ¢(0). Then b = ¢(0) = ¢(20) = 2¢(0) = 2b and b = 0.

Ifa € RC E, then p(a) = p(a+0) = p(0)+a=a.Ifz,y € E and z < y, than
y=zVyand o(z) < p(z)V ¢(y) = ¢(z Vy) = ¢(y). The proof is complete. m

A functional ¢ : E — R on a Banach lattice E is called p-convex
(positive convex) if it satisfies the following conditions:

Pl. ¢(z) = ¢(|z]) for all z € E;

P2. ¢(nz) = nyp(z) for z € E and n € N;

P3. Ifz,y€ E,z > 0and y > 0, then p(z Vy) = o(z) V ¢(y);

P4. Ifz€ E,a€ R,z >0and a >0, then ¢(z+ a) = ¢(z) + o;

Proposition 1.2. FEvery p-conver functional ¢ : E — R satisfies the

followihg conditions:

P5 ¢(0) = 0;

P6 p(a) = |a| fora € R C E;

P7 Ifz,y € E and 0 < z < y, then ¢(z) < ¢(y);

Proof. Similar to the proof of Proposition 1.1. ]

Proposition 1.3. Let ¢ : E — R be an m-convez functional on E.
Then the functional ®(z) = ¢(|z|) is p-convez.

Proof. Obvious )

2. Spaces to functions

Let B(S) be the Banach lattice of all bounded functions from the non-
empty set S into R with the Wierstrass-Chebyshev norm ||f|| = maz{|f(z)| :
z €S}

If S is a subspace of B(S), then Tg is the topology on S generated by
E and it has a base consisting of all sets of the form n{f,."‘U.- 1i=1,2,...,n}
wheren € N, fi...,fu € E and Uy, ..., U, are open subsets of R. The topology
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TE is the coarsest topology on S such that all functions of E are continuous.
The space E separates the set S if for each pair of distinct points z,y of S there
exists a function f € E such that f(z) # f(y). If E separates the set S, than
(S,TE) is a Tykhonov space. :

Let a subspace E of B(S) separate the set S. For every f € E we
denote is(f) = inf {f(z) : z € S} and mgs(f) = maz{f(z) : z € S}. Then
£(8) C lis(f), ms(f)] = R(f) and the mapping 7 : S — RE, where xg(z) =
{f(z): f € E}, is an embeding of (S,Tg) in RE. The closure cgS of the set
S = ng(S) in RE is a compactification of the space (S, Tk) and cgS is a subset
of the set II{R(f) : f € E}.

A subspace E of B(S) will be called a complete Banach lattice of func-
tions on a set S if E contains all constant functions, separates the set S and E
is a Banach sublattice of the Banach lattice B(S).

Let the subspaces E and F of B(S) separate the set S. The symbol
cgS > cpS means that there exists a continuous mapping h : ¢cgS — cfS
such that h(z) = z for every z € S.

Property 2.1. Let the subspace E of B(S) separate the set S. Then
cgS is the smallest compactification on the space (S,TEg) such that all functions
of E are continuously eztandable over cgS.

Proof. Obviuos. l

Property 2.2. Let F C E C B(S) and F separate the set S. Then
cegS > crS.

Proof. Obviuos. s

Property 2.8. Let E be a complete Banach lattice of functions on

a set S. Then the operator u : C(cgS) — B(S), where u(f) = f|S, is an
isomorphism of the Banach lattice C(cgS) onto the Banach lattice E.

Proof. Follows from Property 2.1 and the Wierstrass-Stone Theorem
([16],p. 191; [34], p. 115). I

Property 2.4. Let eg(f) be a continuous extension of the function

f € E over cgS and E be a complete Banach lattice of functions on a set S.

Then eg : E ange C(cgS8) is an isomorphism.

Proof. Follows from Property 2.3. &

3. On m-convex and p-convex functionals over spaces of func-
tions
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Fix a non-empty set S and a complete Banach lattice F' of finctions on
aset S.

Proposition 3.1. Let®#Y C S. Then:

1. The functional
my : F — R,

where my (f) = sup{f(y) : y € Y}, is sublinear and m-covez.

2. The functional
ny : F — R,

where ny(f) = sup{|f(y)| : y C Y}, is sublinear and p-convez.

Proof. Obvious. -

The family v of subset of S is multiplicative if for all H,, H, € v we have
Hlane'ya.ndHl;éO.

Corollary 3.2. Let vy be a multiplicative family of subsets of S. Then:

1. The functional
m,: F — R,

where m,(f) = inf{ my(f): Y € v}, is sublenear and m-convez.

2. The functional
ny: F — R,

where n(f) = inf {ny(f) : Y € v}, is sublinear and p-convez.

Proposition 3.3. Let S be a compact space, F = C(S), v be a
multiplicatiive family of closed subsets of S and Y = N{H : H € v}. Then
Y # 0, my = m, and ny = n,,.

f € F. Let m.(h) > my(h) for some h € F. Denote g = h — ig(h) + 1. Then
g > 0 and n.,(g) = m,(g) > my(g) = ny(g). Fix an open subset U of § such
that Y CU C {z € S : g(z) < m,(¢)}. Then H\ U # 0 for every H € 7 and
YON{H\U:He€~v}#0. Hence Y \ U = 0. This is contradiction. The proof
is complete. i

Proof. It is clear that m.,(f) > my(f) and n, > ny(f) for every

Lemma 3.4. Let ¢ : F — R be an m-convez functional. Then
is(f) < @(f) < ms(f) for every f € F.
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Proof. Follows from the inequalities ig(f) < f < mg(f) and Properties

M5 and M6. ]
Lemma 3.5. Let ¢ : F — R be an p-convezr functional. Then

0 < ¢(f) < |IfIl for every f € F. '
Proof. Follows from Properties P1, P5 and P7. ]

Lemma 3.6. Let S be a compact space, F = C(S), ¢ : F — R be an
m-convez functional, h € F and H = {z € S : h(z) < ¢(z)}. Then H # 0 and
#(f) < mu(f) for every f € F.

Proof. Let g = (h — ¢(h)) V0. Then g > 0, ¢(g9) = 0 and H = g~1(0).
Suppose that my(f1) < ¢(f1) for some f; € F. Let f; > 0, my(f;) = 0 and
@(f1) = b. There exists ¢ > 0 and an open seét U such that H C U and b >
€ +my(f1). For some k € N we have kg(z) > fi(z)+bforeveryz € S\U. It is
clear that p(kg) = my(kg) = ¢(g9) = 0. Let § = maz{fi(z):z € U} = my(f1).
Then ¢(6) = § < b. By construction fo = § Vkg > f1, ¢(f2) = @(6 V kg) =
§V0=246<b=¢(f1). From Property M6 it follows, that ¢(fz) > ¢(f1). The
proof is complete. »

Lemma 3.7. Let ¢ : F — R be an m-convez functional, § > 0,h € F
and H = {z € S : h(z) < ¢(h) + 8}. Then H # 0 and ¢(f) < my(f) for every
feF.

Proof. Let X = cpS,Y = {z € X : ep(h)(z) < ¢(h)}. Then Y C
ClxH and my(er(f)) < my(f) for every f € F. From Lemma 3.6 it follows
that ¢(f) < my(er(f)) for every f € F. The proof is complete. ]

Lemma 3.8. Letp: F — R be a p-convez functional, 6 > 0, h € F
and H = {z € S : |h(z)| € ¢(z) + 6}. Then H # 0 and ¢(f) < my(f) for
every f € F.

Proof. It is sufficient to consider the case S = ¢S and F = C(crS).
Let g = (|| V ¢(h)) = ¢(h). Then ¢(g) = 0,9 > 0 and @ # Y = ¢g7'(0) =
{z € S:g9(z) < ¢(9)} C H. By construction, ny(g) = ¢(g) = 0. Suppose that
ny(fi) < ¢(f1) = d for some f; € F and f; > 0. There exists ¢ > 0 and an
open set U such that Y C U and d > € + my(f1). For some k € N we have
kg(z) > fi(z) + d for every z € S\ U. Let b = my(f;) = ny(f1). It is clear,
that ¢(kg) = ny(kg) = 0.
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By construction, f; = bV kg > fi and ny(f2) = ny(bV kg) = b =
p(bV kg) = b < d= ¢(f1). From Property P7 it follows that ©(f;) > @(f1)-
Hence ¢o(f) < ny(f) < ng(f) for every f € F. ™

Proposition 3.9. Let ¢ : F — R be an m-convez functiz;nal. Then
¢ = my for some multiplicative family 1 of closed subsets of the space (S, TF).

Proof. For every f € F and § € R we denote Yy 5 = {z € §: f(z) <
e(f)+6}. f 6 < e, then Yy5 C Yj.. It is clear, that Y; 5 # 0 for every § > 0.
Let Zy = {z € X = crS : er(f)(z) < ¢(f)}. Then Z;y = N{Clix(Yss):6 > 0}.
We consider the set Z = N{Z; : f € F}, the family £ = {Yy5: f € F,6 > 0}
and the family n = {HyNH;N...NHy, : H; € §,i<n,n€ N}. 6 < ¢ and
h= fVvg,then Y5 C Yrs5NY,.. Hence for every H € 7 there exists f € F
and 6 > 0 such that Y;s C H. In particular, the family 7 is multiplicative and
Z # 0. By Proposition 3.3 we have mz(er(f)) = m,(f) for every f € F. From
construction of the family 7 it follows that ¢(f) > m,(f) for every f € F. By
virtue of Lemma 3.7, we have ¢(f) < my(f) forevery f € F and N € 5. Hence,
@(f) = my(f) for all f € F. The proof is complete. (]

Corollary 3.10. Let ¢ : F — R be an m-convez functional. Then the
functional ¢ is convez and there ezists a closed subset S(¢) of the space cpS

such that o(f) = mg(,)(er(f)) for every f € F.

Corollary 3.11. (N.S.Kukushkin [23]). Let X be a compact space and
¢ : C(X) — R be an m-convez functional. Then ¢ = my for some closed
subsetY of X.

Proposition 3.12. Let ¢ : F — R be a p-convez functional. Then
¢ = ng for some multiplicative family £ of the closed subsets of the space (5, TF).

Proof. Analogous to the proof of Proposition 3.9. [

Corollary 3.13. Let ¢ : F — R be a p-convez functional. Then the
functional ¢ is conver and there ezists a closed subset S(p) of the space cpS

such that o(f) = ns(,)(er(f)) for every f € F.

Proposition 3.14. The following assertions are equivalent:

1. (8,TF) is a compact space.
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2. For every m-convez functional ¢ : F — R there exists a subset Y of S
such that ¢ = my.

8. For every m-convez functional ¢ : F — R there ezists a closed subset Y
of the space (S,TF) such that ¢ = my.

4. For every p-convez functional ¢ : F — R there ezists a subset Y of S
such that ¢ = ny.

5. For every p-convez functional ¢ : F — R there erists a closed subset Y
of the space (S, TF) such that ¢ = ny.

Proof. Let Z C S and Y be a closure of Z in (5,TF). Then mz = my
and nz = ny.

Suppose that the space (S, Tr) is not compact. Fix a point zg € cpS\ S.
Consider the m-convex functional ¢(f) = er(f)(zo) and the p-convex functional
¥(f) = ler(f)(zo)|- Then ¢ # my and ¥ # ny for every non-empty subset Y’
of S. The proof is complete. @

QUESTION 3.15. Let E be a Banach lattice and ¢ : E — R be an
m-convex or a p-convex functional. Is it true that ¢ is sublinear or convex?

4. Differentiability of functionals

Fix a non-empty set S, a complete Banach lattice F' of functions on the
set S and a functional ¢ : F — R.

Denote by G(¢, F) the set of points of Gateaux differentiability of the
functional ¢ and by F(¢p, F') the set of points of Fréchet differentiability of the
functional ¢.

Let ¢ be an m-convex functional. From Corollary 3.10 it follows that
there exists a unique closed subset S(¢) of cp§ such that o(f) = mg(,)(er(f)) =
sup{er(f)(z): z € S(p)} for every f € F. For every f € F we denote

S(p, f) = {z € S(¢) : er(f)(2) = ¥(f)},
@!(f) = sup{er(f)(z) : z € S(¢)\ S(», N)}-

Let ¢ be a p-convex functional. From Corollary 3.13 it follows that there
exists a unique closed subset S(¢) of crS such that ¢(f) = sup{ler(f)(z)| :
z € S(p)} = ns(y)(f) for every f € F. For every f € F we put

S(p, f) = {z € S(¢) : ler(f)(z)| = #(/)}
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¢"(f) = sup{ler(f)(z)| : z € S(¢) \ S(¢, f)}-

From results of [8-10], Property 2.3 and Corollaries 3.10 and 3.13 we have
the following assertions.

Proposition 4.1.  The m-convez functional ¢ : F — R is Gdteaur
differentiable at f € F if and only if S(p, f) is a singleton set.

Proposition 4.2.  The p-convez functional ¢ : F — R is Gdteauz
differentiable at f € F if and only if S(p, f) is a singleton set.

Proposition 4.3. The m-convez functional ¢ : F — R is Fréchet

differentiable at f € F if and only if ¢'(f) < @¢(f) and S(yp, f) is a singleton
set.

Proposition 4.4.  The p-convez functional ¢ : F — R is Fréchet

differentiable at f € F if and only if " (f) < ¢(f) and S(p, f) is a singleton
set.

Proposition 4.5. Let ¢ : F — R be an m-conver or a p-convezx
functional. Then the following statements are equivalent:

1. The set G(¢p, F) is dense in F'.
2. The set Q(p,F)={f € F:5(p,f) 1is a singleton set} is dense in S(yp).

3. There ezists a dense first-countable subspace of S(p).

Proposition 4.6. Let ¢ : F — R be an m-convez or a p-convez
functional. Then the following statements are equivalent:

1. The set G(p, F') contains a dense Gs-subset of F.

2. The space S(p, F') contains a dense subset which is completely metrizable.

Proposition 4.7. Let ¢ : F — R be an m-convez or a p-conver
functional. Then the following statements are equivalent:

1. The set F(p, F) is dense in F.
2. The set F(yp, F) is dense and open in F.



Well-Posedness of Optimization Problems and Measurable Functions 221

3. The set of the isolated points of the space S(yp) is dense in S(¢).

Example4.8. Let Y and Z = [0,1]\Y be dense subspaces of the space
[0,1]. Let X = 8Y, S =B8Y \Y and F = {f|S: f € C(X)}. Then ¢cpS = X
and the set Y is dense in c¢rS. Hence the set G(ms, F) N G(ns, F) is dense in
F and F(mg,F) = F(ns,F) =0. Y is a Gs-set in [0, 1], then G(mg, F) and
G(ns, F) are Gs-subsets of F. If Y is the space of rational numbers of [0, 1],
then G(mg, F) U G(ns, F) does not contain a dense Gs-subset of F'.

Exampled4.9. Let X be an infinite discrete space, Z be an infinite
subset of X,Y = ClgxZ \ X and F = C(X). Consider the functionals ¢(f) =
my (er(f)) and ¥(f) = ny(er(f)). Then S(¢) = S(¥) =Y. From Propositions
4.2 and 4.3 G(¢, F) = G(¢y,F) = 0.

5. Baire topologies and well-posed maximization problems

For each topological space X let PX be the set X with the topology
generated by the Gs-sets in X. The topology of the space PX is called the
Baire topology of the space X. The family {f~'U : f € By(X), U is a closed
subset of R} of Baire sets of class 1 and the family {f~'U : f € B,,(X),U
is a closed subset of R} of all Baire sets of the space X form the bases for the
topological space PX. If By(X) C F C B,,(X) and F is a Banach lattice, then
F is a complete Banach lattice of Barie functions on the space X and TF is the
topology of the space PX.

Let by PX = cp,(x)X for every a < w;. The space by PX is called the
Baire compactification of PX of class a.

If X contains a non-empty perfect compact subspace and a < f, then
boPX < bgPX and b, PX # bgPX.

The sequence {H, : n € N} of subsets of the space X is called point-
convergent in X if H = N{H, : n € N} is a singleton subset and for every open
sey U D H in X we have H,, C U for some n € N.

Fix a space X, a complete Banach lattice L of functions on the space
X and a non-empty closed subspace Y of the space (X,Tr). Every f € L
determines a maximization problem (Y, f) : "find yo € Y such that f(yo) =
sup{f(y) : ¥y € Y}”. Such a point yo will be called a solution of (Y, f). The
maximization problem (Y, f) is Tykhonov well-posed if every maximizing se-
quence {y, € Y : n € N}, ie. lim f(y,) = sup{f(y) : ¥y € Y}, converges to a
solution of (Y, f).

The metric characterization of the Tykhonov well-posedness was obtained
in [17] by M. Furi and A. Vignoli.
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Proposition 5.1. (see [10], Proposition 1.5). For the marimization
problem (Y, f) in the space X the following assertions are equivalent:

1. The problem (Y, f) is Tykhonov well-posed and yo € Y is a solution of
(Y, f)- ‘

2. The sequence {Ha(f,Y) =Y N (f~ [my(f)—2"", my(f)]) : n € N} is
convergent in X and {yo} = N{H.(f,Y): n€ N}.

Proof. Let U be an open subset of the space X, H = Nn{H,(f,Y) :
n€N}CUand y, €Y U(Hp(f,Y)\U). Then {y, : n € N} is a maximizing
sequence of (Y, f),lim f(y») = f(%) and lim y, # yo. The implication 2. — 1.
is obvious. =

The compact set & of X is a Baire set if and only if  is a Gs-set in X.
Hence Proposition 5.1 implies.

Corollary 5.2. LetY C X, f € B,,(X), (Y, f) be a Tykhonov well-
posed problem and yo € Y be a solution of (Y, f). Then {yo} is a Gs-subset of
the subspace Y of the space X .

Exampleb5.3. Let (X,d) be a metric space, d(z,y) < 1 for every
z,y € X, H be a non-empty subset of X and fy(z) = 1—inf{d(z,y): y€ H}.
Then C! H is a set of solutions of the maximizing problem (X, fyr). The problem
(X, fu) is Tykhonov well-posed if and only if H is a singleton set. It is clear
that fg € C(X).

Example54. Let zo be a non-isolated point of a space X and the
character x(zo,X) of a point zg in X be countable. Fix an ordinal number
0 < a < w;. Then tnere exist a countable base {U, : n € N} for X at the
point zo and a sequence of non-empty Baire sets {V, : n € N} C {f~1(0) :
f € Ba(X)} of class a such that V,; C U, \ Un41 and U, \ V,, # 0 for every
n € N. We consider the function g : X — R such that g(zo) = 1, ¢71(0) =
X\n{Van{zo} : n € N} and g7}(1 — 27") = V,, for every n € N. Then
g € Ba(X)\ C(X), the maximization problem (X,g) is Tykhonov well-posed
and zg is a solution of (X, g).

Exampleb5.5. Let 29 € X, g(z0) = 1 and g7(0) = X \ {zo}. Then
the maximization problem (X, g) is Tykhonov well-posed and z is a solution of
(X, g). If the pseudocharacter of a point z¢ in X is countable, then g € By(X). If
the pseudocharacter of a point zp in X is uncountable, then g € B(X)\ B, (X).
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Proposition 5.6. Let X be a space, L be a Banach sublattice of B(X)
and By(X) C L. Then:

1. Every compact subset of the space S = (X,TL) is finite.

2. If {zn : n € N} is a convergent sequence of the space S, then there ezists
n € N such that z,, = z,, for every m > n.

3. If Y is an infinite countable subset of S, then the setY is closed and de-
screte in the space S and Y contains an infinite subset Z such that the
closure of Z in cr(X) = bX is homeomorphic to the Stone-Cech compact-
ification BZ of the descrete space Z. Moreover, if By(X) C L, then the
closure of Y in cL(X) is homeomorphic to the Stone-Cech compactification
BY of the descrete space Y.

4. If Y is an infinite subspace of the space S and Z is a closure of Y in
cr(X), then for every point z € Z\'Y the character x(z,Z) of the point z
in the space Z is uncountable.

Proof. Let Y = {y, : n € N} be an infinite subset of S and y, = ym
implies n = m. For every n € N there exists a closed Gs-subset ®, of the space
X such that:

(i). yn € ®, for every n € N.
(ii). If n < m, then &, N &, = 0.

Then {®, : n € N} is a descrete family of open and closed subsets of the spaces

PX and S. The mapping idx : § — PX, where idx(z) =z forallz € X =

S = PX, is continuous. Let H C N. We consider the function fg : X — R,

where f'(1) = U{®, : n € H} and f;'(0) = X \U{®, : n € H}. It is clear

that fg € B2(X). Hence if B(X) C L, then every pair of disjoint subsets of Y’

has disjoint closures in bX and the closure of Y in X is homeomorphic to 8Y.
Weput Z(X)={f"1(0): fe C(X)}and CZ(X) = {X\U : U € Z(X)}.
There exists a sequence {U,, € CZ(X): m € N} such that:

(ili). UnNY # @ and Y \ Uy, is an infinite set for every m € N.
(iv). UnNU, =0 if m # n.

Then {Up, : m € N} is a descrete family of open and closed subsets of
PX and S and U = U{U,, : m € N} is open and closed in PX and S. Fix
the points z, = ym, € UnNY. Let Z = {y, : n € N}. If H C N, then we
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consider the function gy : X — R, where g,}l(l) = U{Un : m € H} and
g;,l(O) = X \g{,l( 1). By construction, gy € L for every subset H of N. Hence
every pair of disjoint closed subsets of Z has disjoint closures in bX and 327 is
homeomorphic to the closure of Z in bX. The assertions 1 and 3 are proved.
The assertions 2 and 4 follow from the assertion 3. The proof is complete. =

Corollary 5.7. Let X be an infinite space, L be a Banach sublattice of
B(X) and By(X) C L. Then there ezists an m-convez functional ¢ : L — R
and a p-convez functional 3 : L — R for which G(p,L) = G(¢,L) = 0.

Proof. There exists an infinite subset Y of X such that the closure H of
Y in ¢z X is homeomorphic to SN and Y is a closed subset of (X, 7). Let Z =
H\Y. Then Z is a compact subset of ¢, X and Z is a homeomorphic to BN\ N.
Consider the functionals ¢(f) = mz(er(f)) and ¥(f) = nz(er(f)). Then
S(¢) = S(¥) = Z. From Proposition 4.2 it follows that G(¢,L) = G(¢,L) = 0.
“

Proposition 5.8. Let L C F C B(S), L be a complete Banach lattice
of functions on §, X = ¢1S,Y = cpS and f € F for every f € L, where
f(z) =0 ifz € f~is(f),0] and f(z) = 1 if f(z) > 0. Then for every open
Fs-set U of the space X the set Cly(UN S) is open in Y.

Proof. Let U be an open Fj-subset of X. Then there exists a continuous
function g : X — [0,1] such that X \ U = g~1(0). Let f = g|S. Then f € L
and f € F. The function ep( f) = h is continuous on Y, h(Y) C {0,1} and
h=1(1) = Cly(U N S). The proof is complete. .

Corollary 5.9. Let X be a space and a < . Then for every open
Fs-subset U of bo PX the set Cly,px (U N X) is open in bgPX .

Corollary 5.10. Let X be a space. Then the closure of every open
Fy-subset of b,,, PX is open.

Exampleb5.11. Let ¥; and Y; be countable dense subsets of the Cech
complete space X,Y1NY, =0,Y =YUY; and L = By(X). ThenY is a
descrete closed subspace of the space PX and Cl., xY1 N Cl., xY2 # 0. Hence
the closure of Y in ¢z X is not homeomorphic to the Stone-Cech compactification
BY of the descrete space Y and the last part of assertion 3 from Proposition 5.6
is not valid for L = By (X).

QUESTION 5.12. Let By(X) C L. Is every convergent sequence of the
space ¢ X trivial?
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6. The solution of the main questions in the spaces of Baire
functions

Fix a Tikhonov spéce X and a Banach lattice L of functions on a space
X such that By(X) C L C B, (X).

Lemma 6.1. LetY C X. ThenG(my,L) = F(my,L) and G(ny, L) =
F(ny,L).

Proof. Let Z be the closure of Y in ¢z X. Then my(f) = mz(er(f))
and ny(f) = nz(er(f)) for every f € L. Let f € L and S(my, f) be a sin-
gleton subset. Then S(my, f) is a Gs-set of Z. By Proposition 5.6 we have
S(my,f) C Y. Hence S(my, f) is an open subset of the space Z, the set
H = Z\ S(my, f) is closed in Z and f(y) < my(f) for every y € H. Therefore
my (f) = mu(eL(f)) < my(f) and from Propositions 4.1 and 4.3 it follows that
f € G(my,L)n F(my, L).

If S(ny, F) is a singleton subset, then S(ny, f) is an open subset of Z
and ny(f) < ny(f). The Propositions 4.2 and 4.4 imply that f € G(ny,L)N
F(ny,L).

These facts yield the following assertion too.

Lemma 6.2. LetT(Y,L)= {(Y,f): f € L, (Y, f) is a Tykhonov well-
posed mazimization problem}. Then G(my,L) C T(Y,L).

Theorem 6.3. For every non-empty subspace Y of the space PX the
following assertions are equivalent:

1. The set G(my, L) is dense in L.

The set G(ny, L) is dense in L.

The set G(my, L) is dense and open in L.
The set G(ny, L) is dense and open in L.
The set F(my, L) is dense and open in L.
The set G(ny, L) is dense and open in L.
The set T(Y, L) is dense in L.

The set T(Y, L) contains an open and dense subset of L.

® ®™® NS ;R e

Every non-empty Gs-subset of Y contains a singleton Gs-subset of Y.
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10. The set of isolated points of Y is dense inY .

Proof. The implications 1 — 3 — 5 — 10 — 1 and 2 — 4 —>
6 — 10 — 2 follow from Lemma 6.1 and Proposition 4.1 — 4.7. The im-
plication 3 — 8 follows from Lemma 6.1. The implications 8 — 7 and
9 — 10 — 9 are obvious.

Let f € L,(Y,f) € T(Y,Y) and yo € Y be the solution of the problem
(Y, f). Then {yo} is a Gs-subset of the space Y. There exists a function g €
Bi1(X) such that g(yo) = 1 and g(y) = O for every y € Y \ {yo}. Let f, =
f+2™g. Then f = limf, and f, € F(my,L) for every n € N. Hence
F(my,L) is a dense subset of T(Y,L). This proves the implication 7 — 5.
The proof is complete. -

Corollary 6.4. The following statements are equivalent:

The set G(mx, L) is dense in L.

~

The set G(nx, L) is dense in L.

The set T(X, L) is dense in L.

The set G(mx, L) is dense and open in L.

The set G(nx, L) is dense and open in L.

The set F(mx, L) is dense and open in L.

The set F(nx,L) is dense and open in L.

The set T(X, L) contains an open and dense subset of L.

®© ™ NS & h b

Every non-empty Gs-subset of the space X contains a singleton Gs-subset
of X.

10. Every non-empty Gs-subset of the space PX contains an isolated point of
the space PX.

11. The set of isolated points of PX is dense in PX.

Corollary 6.5. LetY be a non-empty subspace of the space PX. Then
G(my,L) € G(my, B,,(X)) and G(ny, L) C G(ny, B,,(X)).

Ezample6.6. If X is a first countable non-descrete space, then the
space PX is descrete and T(X, Bo(X))\ G(mx, B, (X)) # 0 for every a > 0.
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Ezample6.7. LetX =[0,1] and By(X) C L. Then G(mx,C(X)) C
T(X,L) and C(X)NG(mx,L) # 0.

CONSTRUCTION 6.8. Fiz a space Y and the compactification bY of Y .
For every ordinal number a on the set Q(a) = {# < a: is an ordinal number}
consider the topology induced by the order. Consider the subspace II(Y,bY) =
(bY x Q(w1))U (Y X {w1}) of the space bY x Q(w; + 1). The space bY x Q(w;)
is pseudocompact and fQ(wy) = Q(wy + 1). Hence, by the I.Gliksberg Theorem
((16], p.298), BII(Y,bY) = bY x Q(wy+1). The subspace Y x {wr} =Y is closed
in X = II(Y,bY) and S(my) = S(ny) = bY X {w,}.

. Fzampleé6.9. There exist a Tykhonov space X and a closed subspace

Y of X such that:

1. Y is homeomorphic to the space @ of rational numbers of the space Z =
[0,1].

2. S(my) = S(ny) = Z.

3. F(my,C(X))= F(ny,C(X))=0.

4. G(my,C(X)) and G(ny,C(X)) are dense Gs-subsets of C(X).
5.

The set T(Y,C(X)) is dense in C(X) and it is of the first Baire category
in C(X).

LetY = Q,bY = Z = [0,1]) and X = II(Y,bY). The space X and its
subspace Y =Y X {w,} are constructed

Ezample6.10. There exist a Tykhonov space X and a descrete closed
subspace Y of X such that:

1. F(my,C(X))=T(Y,C(X)) C G(my,C(X)).

2. F(my,C(X)) # G(my,C(X)).

3. F(my,C(X)) is an open and dense subset of C(X).
4. S(my) is a metrizable compact space.

Suppose that bY is a metrizable compactification of a countable descrete
spaceY = N andY =Y X {w} C II(Y,bY) = X. The subspace Y is closed
and descrete. Hence F(my,C(X)) = T(Y,C(X)) = {f € C(X) : S(my, f)
is a singleton subset of Y}. By construction, co(x)X = bY x Q(w; + 1) and
S(my) = bY x {w1}. There ezists a function f € C(X) such that S(my, f) is
a singleton subset of bY \'Y. Therefore f € G(my,C(X))\ F(my,C(X)).
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7. The space of Borel measurable functions

Let X be a Tykhonov space. '

The field of the Borel subsets of X is the smallest o-field of subsets con-
taining all open and all closed subsets of X.

The function f : X — R is Borel measurable if f~'H is a Borel sub-
set of X for every open subset H of R. FEvery Baire measurable function is
Borel measurable. If X is a perfectly normal space, then every Borel measurable
function is Baire measurable. ,

Denote by M(X) the set of all Borel measurable functions of the space
X. It is clear that M(X) is a complete Banach lattice of functions on the set
X and B,,(X) C M(X).

Let M X be the set X with the topology Tar(x). The space M X is descrete.
For every countable space Y of the space M X the closure of Y in epr(x)(X) is
homeomorphic to the Stone-Cech compactification BY of the descrete space Y .

Theorem 7.1. LetY be a non-empty subspace of the space X. Then:
1. G(my, M(X)) = F(my, M(X)) € T(Y, M(X)).
2. G(ny, M(X)) = F(ny, M(X)).
3. AI;z(e s;ts F(my,M(X)) and F(ny,M (X)) are open and dense in the space
X).

Proof. The space M X is descrete. Let Z be the closure of the set Y in
em(x)X. If H is a singleton Gs-subset of the space Z, then H CY. The set Y
is descrete and dense in Z. The proof is complete. ]

Corollary 7.2. Let L be a complete Banach lattice of functions on a
space X, M(X)C L and Y be a non-empty subspace of the space MX. Then:

1. The space (X,TL) is descrete.
. G(my,L)= F(my,L)CT(Y,L).

2

3. G(ny,L) = F(ny, L).

4. The sets F(my, L) and F(ny, L) are open and dense in L.
5

. If the set Y is countable, then the Stone-Cech commpactification Y of
the descrete space Y coincides with the closure of Y in cpX.
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Proposition 5.8 yields.

Corollary 7.3. The closure of every open F,-subset of the space
em(x)X is open.

Remark 7.4. Let X = [0,1]. Then PX = MX is a descrete space,
M(X) = B,,(X), em(x)X # BMX and for every countable subspace Y of M X
the Stone-Cech compactification BY of Y coincides with the closure of Y in
CM(X)X.

8. The case of Lindelof spaces

Proposition 8.1. Let PX be a Lindelsf space. Then:
1. X is a Lindelof space.
2. By(X) = B,,(X)=C(PX).
3. The set f(X) is countable for every f € C(PX).

Proof. It is clear that B, (X) C C(PX) for every space X. Let f €
C(PX). For every point z € X there exists a closed Gs-subset &z of the
space X such that z € ®z C f~!(f(z)). The open cover {®z : z € X}
of the space PX contains some countable subcover {®#z, : n € N}. Hence
f(X) = {f(zn) : n € N} is a countable set and f~1U = U{®z,: f(zn) € U} is
a F,-set for every subset U of R, i.e. f € Byj(X). The proof is complete. H

Interesting results in this direction were obtained in [18] by J.E.Jayne.
In [18,25] it was proved that the scattered space X is Lindeldf if and only if the
space PX is Lindelof. A space X is scattered if every non-empty subspace Y of
X contains at least one isolated point.

QUESTION 8.2. Let X be a Lindelof space, PX be a paracompact space
and C(PX) = B,,(X). Is it true that PX is a Lindelof space ?

QUESTION 8.3. Let X be a metric space and C(PX) = B,,(X). Is it
true that X is a o-descrete space ?

9. The case of locally compact non-compact space

Fix a locally compact non-compact space X.
Let f : X — R be any function. The limit of f as z € X tends to
infinity is the element b = lim{f(z) : * — infinity} satisfying the following
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condition : for every € > 0 there exists a compact subset & of X such that
|f(z) — b) < € for every z € X \ ®.

By Cy(X) we denote the set of all continuous functions f on X tending
to the number b € R as z tends to infinity. Let Coo(X) = U{Cy(X) : b € R}.
The space Coo(X) is a complete Banach lattice of continuous functions on X.
The space Co(X) is a Banach space, a ring without unity and a lattice.

The compactification ccy(x)X = o (x)X is the one-point Alexandrov
compactification of the space X (see [16, 31, 34]).

IfL CC(X)and F = LUCy(X),then ¢, X = cpX is the Constantinesku-
Cornea comactification of the space X generated by L (see [4], Chapter 13).

By Cj,(X) we denote the set of all continuous functions f € C(X) satis-
fying the following condition: there exist a compact subset ® of X and a disjoint
family {U, : p € M} of open subsets of X such that X \® C U{U, : p € M}
and f|U, is a constant function for every u € M. Let Gi,(X) be the closure of

1s(X) in C(X). Then Coo(X) C Cis(X), Cis(X) is a complete Banach lattice

of continuous functions on X and ksX = c¢,,(x)X is the Kerekjarto-Stoilow
compactification of the space X (see [4], Chapter 13).

Example9.1. Let N be the descrete space of the natural numbers
and aN be the one-point Alexandrov compactification of the space N. Then
co = Co(N),loeoc = C(N) = B(N), cco(n)N = aN and C(aN) = C(N).

Proposition 9.2. Ifdim(8X\ X) =0, then ksX = X.

Proof. Let A and B be a pair of completely separated subsets of the
space X. Then the sets A; = ClgxA and By = Clgx B are disjoint and there
exist the open F,-subsets V, W of the space fX suchthat ACV, B C WX\
X CVUWand CIlVNCIW = (. Then there exists a continuous function
f: BX — [0,1] such that V C f~1(0) and W C f~!(1). Then g = f|X €
Ci,X, AC g71(0) and B C g~'(1). The proof is complete. =

Example9.3. The space ksR is homeomorphic to the space [0,1] and
ksR \ R is the two-point set.

Example94. If n > 1, then ksR™ is the one-point Alexandrov
compactification of the space R™.

Example 9.5 (see[8,9] and [31, Example121). Let N, =
{meN:m>n}and §£ = {N,:n € N}. Then £ is a multiplicative family
of closed subsets of the descrete space N, n¢(f) = lim{sup{|f(m)| : m > n} :
n — infinity} = liman,,(f) and S(n¢) = BN \ N. Hence the functional
ng : loo = C(N) — R is nowhere Citeaux diferentiable.
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Theorem 9.6. LetY be a non-empty compact subset of the space X .
Then G(ny,C(Y)) = {fIY : f € G(ny,Co(X))}, G(my,C(Y)) = (fIY : f €
G(my,Co(X))}, F(ny,C(Y)) = {fIY : f € F(ny,Co(X))}, F(my,C(Y)) =
{flY : f € F(my,Co(X))}

Proof. Follows from the equality C(Y) = {f|Y : f € Co(X)}. (]

Proposition 9.7. Let Y be a non-compact subset of the space X,

L={fGCo(X):fSOandMy(f):{yGY:my(f):f(y)}#ﬂ} and H =
{f € Co(X): f <0}. Then HNF(my,Co(X)) =0 and LNG(my,Co(X)) = 0.

Proof. Fix f € H. Let ¢ : Co(X) — R be the Fréchet differential of
my at f. By construction, my(g) = 0 and ¢(g) = 0 for every g € H. Hence
¢(g) = 0 for every g € Co(X). There exist a sequence Z = {y, €Y : n € N}
and a sequence {f, € Co(X): n € N} such that Z \ F # 0 for every compact
subset F of X, fa(¥n) = |f(¥n)l +27™ = || full and —272" < f(yn) < O for every
n € N. It is clear that

. my(f+ fu) —my(f)
fim Il

>27!

Therefore f g€ F(my,Co(X)).

Let g € L. Fix yo € My(g). There exists a continous function A : X —
[0,1] such that h(yo) = 1 and f € Co(X). Then my(g +th) =0ift < 1 and
my(g+th) =tif t > 0. Hence

i MY (g + ) —my(9) _ 0 if t<Q,
t “11if t>0

and g ¢ L. The proof is complete. -

Theorem 9.8. Let Y be a non-empty closed subspace of the space
X,f € Co(X) and My(f) ={y €Y : f(y) = my(f)}. Then:

1. {f € Co(X): My(f)=0 or my(f)> 0 and My(f) is a singleton subset
of Y} = G(my,Co(X)}.

2. {f € Co(X): My(|f]) is a singleton subset } = G(ny,Co(X)).

3. {f € Co(X) : My(f) is an open singleton subset of the space Y and
my(f) > 0} = F(my,Co(X)).
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4. {f € Co(X) : My(|f]) is an open singleton subset of the space Y and
ny(f) > 0} = F(ny,Co(X)).

Proof. Obviuos. ™

Corollary 9.9. LetY be a non-empty closed subspace of the space X.
Then:

1. The set G(ny,Co(X)) N G(my,Co(X)) is dense in Co(X) if and only if
Y contains a dense first-countable subspace.

2. The sets G(ny,Co(X)) and G(my,Co(X)) contain a dense Gs-subset of
Co(X) if and only if Y contains a dense subspace which is completely
metrizable.

Corollary 9.10. LetY be a non-empty closed subspace of the space X .
Then the following statements are equivalent:

1. The set F(ny,Co(X))U F(my,Co(X)) is dense in Co(X).
2. The sets F(ny,Co(X)) and F(my,Co(X)) are open and dense in Co(X).

3. The set of the isolated points of the space Y is dense in the space Y.

Example9.11. Let I' be a descrete infinite space and X = R x T.
Then ksX = fB(ksR x I'). The families { = {®# C X : ® is closed in X and
Clx(X \T) is compact } and n = {R x (I'\ H) : H is a finite subset of I'} are
multiplicative. Let Y = ksX \ X Z = ksX \(ksRxT)and S =Y \ Z. Then S
is a descrete dense subspace of the space Y, the character of Z is not countable
at any point of Z, S(m¢) = S(n¢) = Y and S(my) = S(n,) = Z. Hence the
sets F(mg,Crs(X)) and F(ng,Cis(X)) are open and dense in Ciy(X) and
G(ny, Cks(X)) = G(mp, Cis(X)) = 0.

By C.(X) we denote the set of all continuos functions f € C(X) satisfy-
ing the following condition: there exists a o-compact closed subset ® of X such
that f|(X \ @) is a constant function. Then C(X) C Cu(X) and Cy(X) is a
complete Banach lattice of continuous functions on X. Let fwX = cc (x)X-

If X is a noramal space, then for every Lindeldf closed subspace Y of X
the closure of Y in fwX is the Stone-Cech compactification Y of the space Y.

For every normal space X the set fwoX = U{Clg,xY :Y is a Lindelof
closed subspace of X} = U{Clg,xY :Y is a o-compact closed subspace of X}
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is open in BwX, BwX \ BwoX is a singleton set, X C fwoX C BX and BwoX is
open in SX.

Theorem 9.12. Let X be a paracompact locally compact non-compact
space, Y be a non-compact closed subspace of X and Z = Clg,xY \Y. Then:

1. If z € Z, then the character x(z,Z) is uncountable.
2. G(mz,C(fwX))=G(nz,C(BwX))=0.

3. IfY is metrizable, then G(my,C,(X)) and G(ny,C,(X)) are dense Gs-
subsets of Co,(X).

4. If the set of the isolated points of Y is dense in'Y, then F(my,C,(X))
and F(ny,C,(X)) are dense open subsets of the space C,(X).

5. If X is descrete, then for every open Fs-subset U of the space fwX the
set Clg,xY is open in fwX.

6. fwX = Clﬁwa°

Proof. If z € Z N BweX, then z € Clg,xH for some closed Lindelof
subspace H of Y and x(z, Z) is uncountable.

Let {z} = Z \ BwoX. If x(2,Z) is countable, then Y is a Lindeldf space
and Z C PBwoX. The assertions 1 — 4 are proved. The assertions 5 and 6 are
obviuos. -

References

[1JA.V.Arhangelskii. Mappings and spaces, Russian Math. Surveys,
21.4, 1966, 115 - 162.

[2] E. A s plund. Fréchet differentiability of convex functions, Acta Math.,
121, 1968, 31 — 47.

[3] G. B ear. On a generic optimization Theorem of Peter Kenderov, Nonlinear
Anal., 12, 1988, 647 — 655.

[4) M. Brel ot. On topologies and boundaries in potential theory, Lecture
Notes in Math, 175, Springer-Verlag, Berlin, 1971.

[5) M. M. C h o b a n. Baire sets in complete topological spaces, Ukrainskii
Matem. J., 22, 1970, 330 -342.

[6] M. M. C h o b a n. On Baire isomorphism and Baire topology. Solution of
problem of comfort, Soviet. Math. Dokl., 30, 1984, 780 -784.



234 M. M. Choban

[7]M. M. C h o b an. Well-posedness of optimization problems and measurable
mappings, Well-posedness in Optimization. Ertended Abstracts, S. Margherlta.
Ligure, Italy, October 1-4 (1991).

[(]M.M.Choban,P.S.Kenderov. Dense Citeaux differentiability of
the sup—norm in C(T') and the topological properties of T, Compt. Rend. Acad.
Bulg. Sci., 38, 1985, 1603 — 1604.

[ M.M.Choban,P.S.Kenderov. Generic Citeaux differentiability
of convex functionals in C(T') and the topological properties of ', Math. and
FEducation in Math., Proc. of the 15-th Spring Conf. of the Union of Bulg.
Mathematicians (Sunny Beach), 1986, 141 — 149.

[1I0)) M. M.Choban,P.S.Kenderov,J.P.Revalski. Generic
well-posedness of optimization problems in topological spaces, Mathematika ,
36, 1989, 301 - 324.
[11]M.M.Choban,P.S.Kenderov,J.P.Revalski. Densely defined
selections of multivalued mappings, Trns. Amer. Math. Soc., 344, 1994, 533 —
552.

[12) G. Ch o0 q u e t. Ensembles K-analytiques et K-Sousliniens. Cas général
et cas metrique, Ann. Inst. Fourier, Grenoble, 9, 1959, 75 — 81.

[13] F.S.DeBlasi,J. Myjak. Some generic properties in convex and
nonconvex optimization theory, Ann. Soc. Math. Polonae, Ser 1: Comm.
Math., 24, 1984, 1 - 14.

[14] F.S. DeBlasi, J. My jak. Ensembles poreux dans la théorie de la
meilleure approximation, C. R. Acad. Sci. Paris, 308, Serie 1, 1989, 353 — 356.
[15] F.S.DeBlasi,J.Myjak, P.L. Papini Best approximation
in spaces of convex sets, Centro Matem. V. Volterra, Universita di Roma, 48,
1990, 1 - 16.

[16] R.En gelkin g. General topology, PWN, Warszawa , 1977.
[177M.Furi, V.Vignoli. About well-posed minimization problems for
functionals in metric spaces, J. Optim. Theory and Apll., 5, 1970, 225 — 229.
[18] J. E. J a y n e. Spaces of Baire functions, Ann. Inst. Fourier, Grenoble,
24.4, 1974, 47 - 76.

[19] P.S. Ken d er o v. Most of optimization problems have unique solution,
Compt. Rend. Acad. Bulg. Sci., 37, 1984, 297 — 299.

[20] P.S. Ken d er o v. Most of optimization problems have unique solution,
International Series of Numerical Mathematics, 72, Birkhauser, Basel, 1984,
203 - 216. )

[21] P. S. K e n d e r o v. Generic existance of the solution and generic well-
posedness of optimization problems. - Well-posedness in optimization, Eztended
Abstracts, S. Margherita Ligure, Italy, October 1-4, 1991.



Well-Posedness of Optimization Problems and Measurable Functions 235

[22] S. V.Kon jagin. On the points of nonemptyness and continuity of
metric projection, Matem. Zametky, 33, 1983, 641 - 655.

[23)N.S. Kuk us hkin. Axiomatic definition of the maximum. Mathematical
methods in operation research, Moskow University, Moskow, 1981, 91 - 92,

[24) D.G.Larman, R R.Phelps. Cateaux differentiability of convex
functions on Banach spaces, J. London Math. Soc., 20, 1979, 115 - 127.

[25] R. Le vy, M.D. Rice Normal spaces and the G -topology, Colog.
Math., 44.2, 1981, 227 - 240.

[26] E. R. L o r ¢ h. Compactification, Baire functions and Daniell integration,
Acta Sci. Math., 24, 1963, 204 - 218.
[27)R.Lucchetti,F.Patrone Suladensita e genericita di alcuni
problemi di minimo ben posti, Bull. U. M. I. (5), 15-B, 1978, 225 - 240.

[28] P. R. M e y e r. The Barie order problem for compact spaces, Duke Math
J., 33, 1966, 33 - 40.

[29]. Namioka,R.R.Phelps. Banach spaces which are Asplund spaces,
Duke Math J., 42, 1975, 735 - 749.

[30) F. P a t r o n e. Well-posedness as an ordinal Property, Revista di Mat.
Pura ed Appl., 1, 1987, 95 - 104.

[31]R. R. P helps. Convex functions, monotone operators and differentiability,
Lecture Notes in Math., 1364, 1989, Springer- Verlag, Berlin.

[32)J. P.R e v alski. Generic well-posedness in some classes of optimization
problems, Acta Univ. Carolinae, Math. et Phys., 28, 1987, 117 - 125.

[33] J.P. Revalski. Well-posedness almost everywhere in a class of con-
strained convex optimization problems, Math. and Education in Math., Proc.
of the 17-th Spring Conf. of the Union of Bulg. Mathematicians (Sunny Beach),
1988, 348 - 353.

[34) Z. S e m a d e n i. Banch spaces of continues functions, PWN, Warszawa,
1971.

[35] S. B. St e chkin. Approximation properties of sets in normed linear
spaces, Rev. Roumanie Math. Pure. Appl., 8, 1963, 5 - 18.

[36] C.S t e gall. Topological spaces with dense subspaces that are homeomor-
phic to complete metric spaces and the classification of C(K) Banach spaces,
Mathematika, 34, 1987, 101 - 107,



236 M. M. Choban

[37]M. Talagrand. Deux Exam ple s de functions convexes, C. R.
Acad. Sci. Paris, 288, A, 1979, 461 - 464.

(38] AAN.Tyk honov. On the stability of the functional optimization
problem, USSR J. of Comp. Math. and Math Physics, 6, 1966, 631 — 634.

Krasnodonskay ul., d.72, kv. 119 Received 09.02.94
g. Tiraspot
MOLDOVA



