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1. The role of waveguides in modern technology and physics is well
know. From the point of view of physical application, great interest attaches to
acoustic, electromagnetic, elastic and other waveguides. Various wagveguiding
systems are described by various dynamical equations, but waves have a series
of general peculiarities, which admit a unique mathematical description. To this
class of wavequiding system corresponds the dynamical equation of the form

(1.1) LV = Vi = CVig + iBV, + AV = f,

where A, B and C are symmetric, generally speaking, unbounded operators in
a Hilbert space H. V(z,t) : R' x R! — H is a smooth function which describes
the state of system. We consider the solution of equation LV = 0 of the form
V(z,t) = ue'(wt=%2) where u € H is an amplitude, w is frequency and k is a
wave number. By substituting V(z, t) in equation

Vie — CVez + iBVy + AV =0
we obtain
(1.2) Lk, w)yu=(k*+kB+A-v?)u=0,

This equation shows the relation between k, w and u. This is two parametric
nonlinear spectral problem. The functions k(w) and w(k), k,w € R?! are called
dispersing curves. The solution of equation (1.1), which will be defined below, is
understood in a generalized sense. Note that a wide class of regular waveguiding
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systems is given by the equation (1.1), where coefficients A, B and C, satisfying
the following conditions, are operators in H:

1°) A = A* is nonnegative operator i.e (Au, u) > 0, for all u € P(A) and
A has a discrete spectrum

(v2) ,0< v < o' <., s0 that (A + 1) € S,

29) C is bounded and positive definite operator, i.e there exists numbers
c- and ¢4 satisfying

¢ (u, u) < (Cu, u) < Ci(u, u)

3% (A+I)"iB(A +I)~% € So, where

(A+I)‘% = j,l2 A+ 1)"%dEA(,\), E4()is a spectral measure of operator
A.

4%) There exists a number p > 0 satisfying

(Au, u) + k(Bu, u) + k*(Cu, u) > u?(u, u),

for k€ R'\,ue D(A+ I)}

Seo is a set of compact operators.

R e m a r k. Under condition 1° — 4° quadratic forms of operators A, B
and C are defined on D(A + I )*- energetic space of operator A. A generalised
solution of equation (1.2) is understood in the following sense:

(Au, n) + (Bu, n)k + (Cu, n)k? — w?(u, n) = 0,for anyu,n € D(A + I)}.

l.l.Example. Let G = (7,]| 21 |< 00,21 = (22, z3) € N) be a three
dimensional cylinder. Consider the equation

v A& d dv
(1.3) 7 ang-:; E““'"Tz}) =0,

where a,5 inLoo(§2). Let there exist numbers o4 > o_ > 0 such that for any
£ inG® in Q the uniform hyperbolicity condition, i.e

(1.4) 0-1&a | € @ap < 4] &a |2,

is satisfied. We note that the indices a and B imply the sum from 1 to 3. Three
forms of boundary condition are considered:

I) V(t,zl,ZQ,:ta) |,= 0, §=d0 x Rl, te R!
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II) v".a,,,gz% |S=0,te R!

1) (v%aug-2 4+ hV) |,= 0, t € B!

dXp

Theorem 1.2. The equation (1.3) with boundary condition I)-1II) can
be reduced to equation (1.1) with coefficients A, B and C satisfying the condition
19) — 49),

Proof. For definiteness we consider the I) - boundary condition. The
remaining cases are considered analogously (see [3], [4]). Rewrite equation (1.3)
in the following form:

v a2v S d2v
Z[almd

d :
dae? au:i_;:? - z1dZ,, dTp, (a""d_a:‘)]—

(1.5) - Z e ,..( mng )

mn=2

Consider the function V(t,2;,z2,23) : R' x R! — Ly() where t and z,
are fixed. By comparing (1.5) with equation (1.1) we obtain ,

d du . du d
Au = —m(amnz;:), Bu = z[a;mm + m(aml)], Cu = a;yu where

u = u(z3, z3) € C3(R) = (u, u € C}(Q) ~ C(W),u |r=0)
The generalized approach gives
d? a?
F/ Vijdzodzs — -—7/ a1 Vijdzadza—
d av
dz /[ lmd U (ale)-_]dz2d33+

dV dj dv
+ ./n amnm.mdzgdzs - /pa"'“d v*7ds =

Now define the operators A, B and C by the use of bilinear forms: where
v is vector of normal to I' and

V(z,t) € W},z, t € R',n e WHR).
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(AU, 1) = [ @mn £ P dzydas, (Bu, n) = [, aymlif 2Tt u(2L ) dzdas,

(€)= [ audsade - (Au, 0) % [ w lly,u € W(@).

Therefore the form (Au, u) is closed. Then it is known (see [2] ) that
to the form (Au, u) corresponds a selfadjomt operator A and Hy = D(A*)

Thus,in the given case D(A’}) =D((A+ I)?) and the condition A = A* > 0 is
fulfilled. The discreteness of spectrum of A follows from Rellich’s theorem, i.e
W}(Q) € Ly(R) is a compact imbedding. Hence (4 + I)™! € S. Condition 2°)
is the consequence of (1.4)- the uniform hyperbolicity condition.

For fulfillment of 3° it is necessary and sufficient that ([5],[8]) the following
inequality must be satisfied

| (Bu, ) | SC(lu g, -l g + 17wyl wllg), 1wl

is an ordinary norm in H and |u |y, = (Au, u)% Now consider the
condition 4°. In physics it refers to the condition of non-negativity of energy.
But mathematically, in given case, it is the condition of inform hyperbolicity.
Indeed, from (1 4) it follows that

fn aapfrl d.rgdz;, >q- fn | | dzodzs.
Take V = e"""' . Then

/ Gapg— (u "‘") ('tT e~ )dzydzy = (A(k) u, u) >

> q-/ I
dzg

P 2
‘H d_’; l )d$2d33 + kz/ l u |2d22dz3 > (g-M1 + kz)/ I u |2dzzd=¢‘3
o Q Q

The least constant among ¢g_A; + k2, for all k € R! will be p = g_\;, where \,
is the first eigenvalue of operator

d?u  d*u

Au = d—z-?-{-z:t—g.

Thus, condition 4°) is fulfilled with u = g_A! > 0. .
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1.3. A problem on oscillation of countable number of noninteracting
strings.
The following equation of this system can be reduced to the form (1.1).

2%,  ,d®,
diz  ndz?

We shall study this problem in the frame of abstract mathematical model. Now
consider a problem of spectral structure of two parameter pencils (1.2). For this
purpose we introduce the following definition: Pair w and k is called a spectral if
there exists a vector u # 0 for which £L(w, k) u = 0i.e Au+Bu+k?Cu—w?u = 0.
A set of such pairs is denoted by M. Let M;(w) = {k: (k, w) € M} be a set of
wave numbers and My = {w : (k, w) € M} a set of eigenfrequencies.

., dP
+ 21"3“(1_::. + v?.Qn =0

1.4. Theorem A spectral set M is defined by the following inequalities

(1.5) ci(Imk)’ + (Rew)? — (Imw)? — pu? >0,

(1.6) A (Imk)?[cL(Imk)? + (Rew)? — (Imw)? — p?] > (Rew)?.(Imw)?

Proof. Condition 4°) is equivalent to the following inequality I( Bu, u)I <
2(A,u, u)%.(Cu, u)%whereA,, =A-u?l,ue D(A+ I)% = H4. If u is replaced
by ¢ + %, where ¢ € H4, ¥ € H,4, then we obtain

(1.7) | (B(p+9),0+9) | < (Au(o+9), 0+ ¥)E(Clo+¥),0+ ¥}

| (B(e+%),¢+9)|= (Be,¥)+2Re(Bp, ¥)+ (BY,v)

| (Bo, @) + 2Re(Bo, ¥) + (BY, $) |< [(Aup, @)} + (Au9, )]
(1.8) [(Ce,0)t + (Cv, )]

Now from (1.8) and | ( Bu, u) |< (Auu, u)%.(C'u,u)%
it follows that

| Re(Bo, ) | < 2[(Aup, ©)1.(Co, 0)F + (A0, 9)V.(CH, ¥)H]+
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(1.9) +(Aup, @) (A, 0)E.(Co, )1

Replacing in (1.8) 9 by i3 we arrive to the inequality (1.9) for | Im(Bey, ¢) |

. Similarly, replacing ¢ and ¥ by (B, 1/))% and 9 respectively, we obtain (1.9)

for | (By, ¥) | .
Now in condition 4° we substitute k to k + k!. Then

(Au, u) + (k + k') (Bu, u) + (k + k')".(Cu, u) > p?(u, u)
Hence after regrouping 2
(A, (k) u, u) + k' (A(k)u,u) + k" (Cu,u) > 0,u € R, where

A (k) = A+ kB + k*C — p2I, A'(k) = 2kC + B. This inequality in its
turn is equivalent to

| (A'(k) u, u) |< 2(Au(k) u, u)? (Cu, u)b.
Consequently, we again obtain the condition of type 4°) and the inequality

equivalent to it. But in given case B = A’(k) and A, = A,(k). Then, by
repeating the same arguments we obtain:

| Re(A'(K) 0, ¢) |, | Im(A'(K)p, ) |,| (A (K}, ¥) < 2[(Au(k) 9, 0)3+

(Au(K) %, )F] + (Au(k)p, @)3(C, ¥)F + (Au(k) ¥, 9)E(Co, 0)F.

For the proof of (1.6) we need the inequality (1.10). Scalar multiplying
(1.2) by u we obtain

(Au, u) + k(Bu, u) + k*(Cu, u) = w*(u, u).
Expansion to real and imaginary parts gives the following equalities:
(Au, u)+(Rek)(Bu, u)+[(Rek)’ —(Imk)*].(Cu, v)-[ (Rew)’~(Imw)’] (v, u) = 0,
(Imk) [(Bu, u) + 2(Rek) (Cu, u)] — 2(Rew) (Imw) (u, u) = 0,
or the same
(1.11)  (A(Rek)u, u) — (Imk)*(Cu, u) - [ (Rew)? — (Imw)?] (u, u) =0,

where
A(k) = A+ kB + k°C,
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(1.12). (Imk) (A'(Rek) u, u) — 2(Rew) (Imw) (u, u) = 0.
Now (1.11)and condition 4% give (1.5). And (1.12) whit application of (1.10)
and (1.11) directly give (1.6). Thus the theorem is proved. ]

1.5. Corollary. If Imk # 0, then Imw # 0 besides Imk > h?(w) 0. If

Imw=0

then (Imk)? > ’-‘2—;"’—2
+

R e m ar k. From inequality (Imk)? > 2";”2 it follows that if w? < u?
then Imk > 0 i.e k is pure complex. Indeed, it is the corollary of condition 4°).
If 42 < w? then I'mk > 0. This means that a real wave number be only in given

case.
1.6. Corollary. From inequality (1.5) and (1.6) it follows that if

Imk = 0, then Imw = 0. Besides (Rew)® > p?.

The following result is derived from the operator theory ( [3], 8], [2] ).
1.7. Theorem. For any k,w € G the sets My(w) and M,(k) are dis-

crete spectrum i.e the sets My(w) and M(k) are infinite sequences of eigenvalues
with a unique limit point at infinity.

In the process of proving theorem 1.7 the method of linearization of pencil
A+ kB + K2C — w*I and a well known method of perturbation of spectra are
used.

If A = A* with a discrete spectrum, then for any small € > 0 spectrum
of operator A + L, except the finite number, belongs to corners

e<argA<e, 1 —e<argA < w+ e,

where AT-310A(-3} js a completely continuous operator, i.e Al pAl-3) ¢
Seo- Indeed, virtue of condition 3°)kB + k2C is A - completely continuous op-
erator.

In physical application great interest attaches to the functions ue(¥t—%=)
where k and w are real. From physical arguments it also follows that a set
of running waves in given frequency | w| > | 4 | must be finite. However, in
frames of condition 1° — 4° a dynamical equation (1.1), generally speaking, has
an infinite quantity of running waves. Such an example will be illustrated below.
On the other hand, there is the following condition guaranteeing the finiteness
of running waves in given frequency:

| (Bu, u) |< 2¢(A,uu, u)3.(Cu, u)%,0 < € < 1, i.e condition 4° is fulfilled
if we substitute C to eC.

(1.13) (Au, u) + k(Bu, u) + €k*(Cu, u) > p?(u, u)



244 Mahir Hasanov

This is called the energetic stability condition, which is valid for the majority
of real physical problems.

2. The structure of real spectrum

In previous item it was ngted that at fulfillment of condition,

| (Bu, u) | < 2¢(A,u, u)2.(Cu, u),0 < € < 1, a set of running waves on
given frequency w is finite, i.e among M;(w) there is a finite number of real
points of spectrum. Introduce the following functionals:

p(u, w) = —(Bu, u) + \/(31;,(2):,—“;(14.”14, u).(Cu, u)

Let d(u, w) = (Bu, u)? — 4(Ayu, uv).(Cu, u), G(w) = {u,d(u, w) > 0},
G’ (w) = {u,d(u, w) > 0}

The sets G(w) and G’(w) are cones in H. In [1] the following numbers
are defined k¥’ (w) = min p_(z) on G'(w), K} (w) = maxp,, on

G'(w),k-(w) = min P_(z),z € G(w), k4 = maxp,(z),z € G(w),

6-(w) = min p4(z), z € G(w), 64+ = maxp,(z),z € G(w).

It is obvious that k'’ (w) < k_(w) < 6- < 64 < ky < K/(w). Besides,
all real spectrum on given frequency w belongs to segment [k_(w), k4(w)].
Corresponding to partition [k’ ,k,] the spectrum o, is divided in interval-
s: [K',k),[k-,6),[6-,64),[6+,K4],(k4, k4] and are denoted correspondingly by
ol ,0_, 00,04,0' . Let w be fixed. Consider L(w, k) as one parametric pencil.
We say that a pair k and u is a pair of the first ( or second ) genus if £L(w, k) =0
and (L'(w, k)u, u) > 0 (L'(w, k) u, u) < 0), where L'(w, k) = 2kC + B. If
(L'(w, k) u, u) = 0 Then it is called neutral. The wave number is called of the
first ( or second ) genus if for any vector u € Ker(L(w, k)) the pair k and uis a
pair of the first ( or second ) genus. Neutral wave number is defined analogously.

In [1] the following theorem is proved.

2.1. Theorem. a) o.(w) consists of wave number of the first genus

and o_ of the second genus. b) 0. and o/, consist of neutral wave numbers,
whose eigenvectors have adjoin vectors.

Now consider the structure of og(w) and w(k) for a concrete example in
frames of abstract mathematical model.
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A problem on oscillation of countable number of noninteresting strings.
Define the coefficients in equation Vyy — CVzz + iBV, + AV =0 as

Apn = V2, Bop = 2Bn¢n, Con = 1200

where {¢}, is an orthonormal basis. For the fulfillment of condition 1°) — 49)
the following are sufficient:

1) "l_i_‘rrgov,2,=oo,

2)0< C_ =infmy?,supmy2=Cy < 0,

3) lim —&—=0,

n—oo v? 41
4) v + 28,k +22 > p?, u>0.

Condition 1°2,2° and 4° are obvxous Let’s expla.m only condition 3°.
Indeed the spectrum of operator (A + B)" B(A+1 )‘ is discrete and consist
of number "5%-"1' Then it is known that ( [2] ) condition

(A+ I)"aB(A + I)"? € So is equivalent to ;ﬁL — 0 for n — oo.

In our case, pencil £L(w, k) = A + kB + kC — w?I in basis (¢,),™ is
given by diagonal matrix, where the elements y2k? + 28, + v2 — w? are on
diagonals. Let ¢ is an eigenvector. Then ¢ = Y>> Cnpn and

(A+ kB + k*C — w’I)p = 0.

Hence

oo
(A+ kB +k*C - w')p =Y Cn(A+ kB +kC - w'l)p, =

n=0

Z(‘U + 2Bk + 72k2 - wz)CnQQn =0

n=0

Consequently,

Cpn (V2 + 2B,k + k292 — w?) = 0. Since ¢ # 0 then (k,w) € M if v2 +
2Bnk+k?42—w? = 0. From this equality expressing w by k we obtain a dispersing
curves equation:

(2.1) wn(k) = £/72k? + 2Bnk + v2.
+w, (k) are symmetric. For this reason we shall investigate only

(2.2) wn(k) = V72k2 + 20,k + v2
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wp(k) = \/ (Tnk + g&)2 + v2 — g;: Hence we obtain the coordinates of
vertex of parabola: (—gé'-, v2 - gé).

Note that under fulfillment of condition 1° — 4° £(w, k) has an infinite
number of real wave numbers. We shall show it in the given example. Put
72 = 1, B2 = v2 — a. Then the vertices of parabolas will be (—f,, a). Therefore,
the straight line w = wo > a intersects the dispersing curves at an infinite
number of points. If condition (1.13) is satisfied i.e

| Bn | €vny/v2 — 2,0 =0,1,2,... then finiteness of o,(w) is proved.

We consider only this case. First of all note that if we introduce the
function
Va(z,t) = (V(z,t), pn) then V,(z,t) satisfies the following equation

d?v, _ 2 d?v,
dt? " dz?
Equation (2.3) is obtained by scalar multiplying the equation

Vit — CVze + 1BV + AV = 0 with ¢,. And (2.3) is a generalized equation
of oscillation of countable number of nonintersecting strings.

The following theorem shows that the structure of og(w) is completely
defined by interarrangement of dispersing curves.

2.2. Theorem. 1) ko € o4(wo) (6-(wo)) if and only if at point ko all

functions w,(k) for which w,(ko) = wo has a derivative
w'n(ko) > 0 (w'n(ko) < 0)

2)ko € o'y (wo) (0. (wo)) if and only if from the condition wy(ko) = 0 it fol-
lows that (ko,wq) is critical point of curve wy,(k) and for any point k € A =
{2 wa(X) = wo, w'n(X) = O} is valid k < ko (k > ko)

3) dim ker L(wo, ko) = 2: 1, wn,(ko) = wo
ng

., dVy,
(2.3) + 21ﬂnﬂ +viV, =0

Proof. Consider a set of dispersing curves
wn(k) = /92 + 2Bk +v2,n=0,1,2,3,...

The curve wy(k) passes through a point (0,v,) and to every point of this
curve corresponds an eigenvector ¢,. If through point (ko,wo) pass curves
Wn, (k), wny(K), . .., wn, (k) then to the pair (ko, wo) corresponds @p, , Pny, - - - @n,
and there are no other eigenvectors. indeed, if ¢ corresponds to (ko, wo) then

o0
k3C + koBp + Apya =0, o= Y Cripn

n=0
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Hence,

0o
E Cn(72 + 2Bnko + v2 — wd)pn = 0 or

n=0
en((72 + 2Bnko + V2 —wd) =0, n =0,1,2...

Consequently, ¢, = 0 only for n = ny,ny,...,n, i.e. ¢ = Cin, + Ca2fn, +...+
Cs®n,. Peculiarity 3) is proved.
Now if kg € 04 (wo) then

(£'(ko, wo) u,u) > 0,u € kerL(wo, ko) . (L'(wo, ko) = ((2koC + B) u, u).

Let (wo, ko) be on curves Wy, , Wy,,...,W,,. Then KerL(wo,ko) = lin(<p,...)f is
a linear combination of ¢p,,...,¢n,.
Therefore

(L' (ko, wo) u,u) > 0 > (L'(ko, Wo)Pn;s Pny) > 0 4> wp, (ko) >0,i=1,2,...

The property 2° follows from theorem 2.1. But for application of this theorem
we are to prove that if ko € o) then every eigenvector has an adjoint vector.

Indeed, the neutrality of ko follows from w’'s(ko) = 0, w,(ko) = wp. Let
the eigenvector uo has an adjoint vector u;. Then

c(wO’ kO) Uo = 0 ’
L'(wo, ko) + L(wo, ko) u; = 0,. Hence

(2.4) L(wo, ko) uy = L'(wo, ko) uo

For solvability of (2.4) there must be £'(ko, wo) o € R(L(ko, wo).
Thus H = KerL(wo, ko) ® R(L(wo, ko)). Then for solvability of problem
(2.4) we obtain the following condition:

(2.5) (L' (ko, wo) uo, u*) = 0, u* € Ker(L(ko, o))

Let Ker(L(ko, wo) ) = Lin(¢ﬂ| y vﬂz’ g '¢ﬂh) if u. = ¢n.'ai = 19 e ] ]E
then

(c’(kOs wO)“Ov u.) = (L'(kﬂv wO)an ‘Pn.') - (“0, ‘C'(kO) wO)‘Pn.‘) =

= (uO, (QkOC + B)Son.) = (uOy (2,‘70771.' + 2ﬂn.' )(uO’ Pn; = 0

Hence wy,'(ko) =0,¢=1,2,...,k
The theorem is proved. -
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