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This paper deals with the differential-functional problem

(') Dsl(zy v) = f(z- Y 3(z,y) D,l(:, V))u
#(z,y) = ¢(z,9) for (z,y) € Eo UK E,

where Dyz = (Dy, z, ..., Dy, z) and Eq U3 E is an initial-boundary set.
The corresponding one-step difference method is of the form

b02(™ = &), (z(mo) y(m"), ,(m)‘g,('u)),
2™ = o™ on Eo[h] U 8 E[h],

where 8o and § are difference operators. We give sufficient conditions for the convergence of a

(i)

sequence {up} of solutions of problem (ii) to a solution of (i). We assume that ®) satisfies a
nonlinear estimate of Perron type with respect to the functional argument. The proof of the
convergence of the difference method is based on recurrent inequalities theorems.

We also provide multistep difference methods for (i). A numerical example is given.

1. Introduction

The problems of finite difference approximation for initial and initial-
boundary value problems of first order partial differential or differential-functional
equations were considered by many authors and under various assumptions. The
main problem of this research is to find a suitable difference equation which sat-
isfies some consistency conditions with respect to the original problem and is
stable.

The papers [4], [5], [8] initiated the discussion of difference methods for
nonlinear equations with first order partial derivatives. Numerical treatment of
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the Cauchy problem for differential-functional equations can be found in [9], [10].
The problem of finite difference approximations for initial-boundary problems
were considered in [2], [3]. The theory of difference methods for weak solutions
of quasi-linear hyperbolic systems in two independent variables was treated in
[12].

An error estimate implying the convergence of the difference schemes
is obtained in [2]-[5], [9], [10] by difference inequalities methods or by simple
recurrent inequalities theorems. All these results are proved under the assump-
tion that the right-hand sides of equations satisfy the Lipschitz condition with
respect to the functional argument.

In this paper we extend the results of [2] to the case of nonlinear Perron-
type estimates with respect to the functional argument. We also provide multi-
step difference methods for mixed differential-functional equations.

To illustrate our results, we give an example of the method of the second
order for the mixed problem.

In this research we take advantage of the general ideas for finite difference
approximations which were introduced in [6], [7], [11].

2. Differential-functional problem.

We denote by C(X,Y) the class of all continuous functions from X into
Y, where X and Y are metric spaces.

Let k¥’ and n be given integers with 1 < ¥’ < n.

Let E = [0,a] X [—b,b] where a > 0,b = (b1...b,),b; > 0for 1 < i < n.
Suppose that 7o € R4, Ry = [0,+00),and 7 = (71...7,) € RY.

We define

D = [~7,0] X [0,71] X ... X [0, Tkr] X [=Tk141,0] X [—75,0]
and c=(c1...¢,),d = (dy...dy) with ¢; = =b;, d; = b; + 7; for 1 < i < k' and
¢i=—-b—T1i,di=b;fork' +1< i< n.
We put @ = E x C(D,R) x R" and
E* = [0, G] X [—bl,bl) X oo X [—bkl,bkl) X (-bk'+l’bk'+l] X oo X (—bu,bn].
Eo = [-70,0] X [¢,d], oE = ([0,a] x [c,d]) \ E*, B =][-0,a]x [c,d].

For every function z : B — R and every (z,y) € E we will consider the function
Z(zy) : D — R defined by 2(;4)(t,8) = 2(z + t,y + 3), (,8) € D.
Finally, let f: Q — R and ¢ : Eo U 8oF — R be given functions.
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We take into consideration the following mixed differential-functional
problem

(1) D:2(z,y) = f(z,y, 2(z,y)» Dyz(zo )
z(z,y) = p(z,y) for (z,y) € EoUKE,

where Dy2(z,y) = (Dy,2(z,¥), ..., Dy, 2(z,y)). We consider classical solutions
of problem (1). More precisely, a function z € C(B, R) is a solution of (1) if
it admits partial derivatives D 2(z,y), Dyz(z,y) for every (z,y) € E*, satisfies
the differential-functional equation on E* and the initial-boundary condition on
EyU & E.

Remark 1. We wish to recall that in [1], [2] we already took into
consideration an analogous mixed problem. Actually, the functional argument
here considered is more general than those adopted in [1], [2], however all the
results given there can be easily carried over to the present setting. We only
state here a result concerning the uniqueness and the continuous dependence of
the solutions.

Lemma 1. Suppose that

1° the function f : @ — R of the variables (z,y,w, q) is continuous and
admits continuous partial derivatives D,f = (Dq, f,...Dq,f) on Q which are
constant in sign, more precisely:

Dy, f(z,y,w,q) 20 for 1 < i <K', Dy f(2,y,w,q) <0 for k' +1< i<,

2° there ezists a function o0 € C(R4 X Ry, Ry) such that
(i) o is mon-decreasing with respect to the second argument
(ii) o(z,0) = 0 for z € Ry and n(z) = 0 is the unique solution of problem

7'(z) = o(z,n(z)), n(0) =0,

(iii) f satisfies the following Perron - type equation

|f(£, Yy, w, q) - f(:t, Y, ﬂ” q)l S a(z, "w - ‘EIIO) on Q’

where || - ||o is the supremum norm in C(D, R).

Under these assumptions the solution of (1) is unique and it depends
continuously on the initial-boundary conditions.

The proof of Lemma 1 is based on the differential inequalities methods
developed in [1].
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3. The finite-difference approximation

We now introduce a mesh in the set B. Let e = (eg,ey,...,€,) be fixed
with e; > 0 for 1 < ¢ < n. Assume that for a given h = (ho, hy, ..., hn) € (0, €],
My and M = (M, ... M,) exist such that M;, i = 1,...,n and M are integers
and M;h; = 7;,i = 1,...,n, Moho = 7o. Denote by I, the set of all the constants
h € (0, €] having the above property. We define the nodal points as follows

y‘(mi) =mih;, i=1,..,n, z(mo) = mgho,

where m;, 0 < i < n, are integers. Let m = (mg,m’), m' = (m1...my).
Then K = (K;...K,) and N = (N;...N,) exist, where K; and N; are natural
numbers, such that

Nih; < b; < (N; + 1)h;, —(K; + 1)h; < =b; < —K;h;, fori=1,...,k
N;h; < b; < (N; + 1)hi, —(K; + 1)h; < =b; < —K;h;, fori=k +1,...,n.
Let M = (M, ...My,) where
M; = Ni+ M; if (Ni+1)h; > b, M; = N+ M;+1if (Ni+1)h; = b;, 1<i< K,

and . -
-M; = -K; - M;if —(Ki+1)hi<bj, —-M; =—-K;-M; -1

if —(Ki+1)hi=-b;, K+1<i<n.
Let No be a natural number such that Nohg < a < (No + 1)ho. We define
Eolh] = {(z(™),y(™)) : ~Mo < mo < 0,~K; <mi < M; for 1 <i <K'
and — M; <m; < N;fork’+1<i<n}

9,E[h] = {(z(m0) y(mT)) € B[h] : 0 < mg < No and there exists i,
1< i < K, such that N; < m; < M; or there exists ¢, k' + 1 < i < n, such that
-M; <m; < —K}’

E[h) = {(z(™),y™)) : =0 < mo < No,—K < m' < N}
.B[h) = E[h]U Eo[h] U 8o E[h].
We also need the mesh in the set D. To this purpose we put:
D[h] = {(z™), y(™)) : ~My < mo <0,0<m; < M;for1<i<K,

~M; <m; <0 fork'+1<i<n}.
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If z : B[h] — R and (z(™),y(™)) € E[h] then we define z(,,) : D[h] — R by
z(m)(a:(’°),y(‘)) = z(z(motso) y(Mm'+S) (5, .. .s,, (z(*),y*)) € D[h)].

Suppose that r is a fixed natural number and —K < m’ < N. Then we
define

Sm]={s=(s1.-.82): —Ki<mi+s <M; fori=1,..,kK,
—M; <m;+s8;<N; fori=k+1,...,n
and s; € {-r,-r+1,...,0,1,..,r} for i = 1,...,n}.
We introduce the following difference operators A, § = (6;...6,) and &o.
If z: Blh] » Rand —K <m’ < N,0< mg < Np then
(2) Az(m) = Z a(,_m)z("“'""""‘)),
s€S[m’)

and ) )
8™ = b7t ST ey ), i =1,m,
s€S[m’]

(3)

60z(m) —_ ho.l [z(m0+lvm,) - Az(m)]

where a, m, C?.Zn' € R are given. We write §z(™) = (§,z(™), vy 62(™)). We will
approximate the derivatives D,z and D,z by means of oz and 6z respectively.
Note that since the coefficients a(, ) and cE'.)' m) depend on m, our approximation
will depend on the points of the mesh E[h].

We denote by F(X,Y) the class of all the functions defined on X and
taking values in Y where X, Y are sets. Let Q, = E[h] x F(D[h], R) x R™.

Assume that for each h € I, we have
®, : Q) — R and ¢y, : Eo[h]U G E[R] — R.

We consider the following difference method for problem (1)

Ztmo+1m) = 4z(™ 4 oy (2m0), y™), 2, 62 ,

(4) 0<mog<Nog—-1, -K<m'<N

2™ = o™ on Eq U 8o E[h).
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It is evident that problem (4) has exactly one solution on B(h].

4. Stability of the difference method

Let |h| = max{h; : 0 < i < n}. For w € F(D[h],R), z € F(B[h], R) we

define
lwlin = max{w™] : (z(™), ™)) € D[h]}.
lzlla,mo = max{]z(z(*),y )] : (), 4(*)) € B[], s0 < mo}

The following assumptions will be adopted in the whole paper.

Assumption Hg. Suppose that

1° ®, : Q4 — R, h € I. and for each (z,y,w) € E[h] x F(F[h], R) we
have ®(z,y,w, ) € C(R*, R),

2° the partial derivatives (Dg, ®p, ..., Dg,®n) = D,®; exist on Q, and
D,®(z,y,w,-) € C(R", R") for (z,y,w) € E[h] x F(D[h], R),

3°for0<mog< No—1,-K <m’ <N, s € S[m'] we have

(5) aom +ho 3 b7 Dy, @4(P)CE), > 0,

=1

where P = (z(m0) y(™) w, q) € D

Assumption H;. Suppose that o : [0,a0) X Ry — R, where ap > a
satisfies the conditions

1° o is continuous on [0, ag) X R4, o(z,0) = 0 for z € [0, ag) and n(z) = 0,
z € [0, ag), is the unique solution of the problem

7'(z) = o(z,n(z)), n(0) =0,
2° if (z,p), (%,p) € [0,a) x Ry and z < Z, p < p then o(z,p) < o(Z, p).
Assumption Hz. Suppose that
1° for (z,y, w,q) € S, w € F(D[h], R) we have
|®n(z,y, w,q) - Qn(z,y, 0, 9)| £ o(z, ||w - ®||n),

2° the operators A and § satisfy the conditions

(6) Z agm =1

(7) Z cst,zn =0,i=1,..,n,

s€S[m’)
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where 0 < mg < Nog—-1,-K <m'<N.

Theorem 1. Suppose that

1° Assumption Ho — H, are satisfied and uy is a solution of (4),

2° vy, : B[h] — R is a given function such that vy, v : I, — R, ezist with
the property that

lo{™ — o™ < ¥o on Eo[h] U & Elh],

(8)
,l.xg})'ro(h) =0,
and , m)
|ov(™ — &, (2("'°),y("' ),(vh)(m),5v;. ) | < v(h),
(9) 0<mg<No-1,-K<m'<N,

lim 7(h) =0,

Under these assumptions a constant ¢¢ > 0 and a function wy : [0,a] — R,
ezist such that for |h| < €o, h € I, we have

(10) llun = valln; < wa(z®), i =0,1,..., No,

and lim,_.o wi(z) = 0 uniformly with respect to z € [0, a].
Proof. Note that a constant € > 0 exists such that for |h| < ¢ the
solution of

(11) n'(z) = o(z,n(z)) +7(h), n(0) = 0(h)

is defined on [0,a] and lim_ow(z) = 0 uniformly on [0,a]. Moreover, for
—K <m'<N,0< mg< Ng—1 we have

Ih(mo+l.'n) (mo+1-"‘) <

Bol®, (=070, 50, (un)my 5957) = B (70,5, (o), 8057 14
+ |Aui™ - Av{™ + ho®), (-‘L'("“’), y™, (”h)(m)’s"g")) -

—ho®) (z(mo) y(m), (v,.)(,,,),sv‘"") |+

+holbory™ — @ (2(m0), y™), (v)m), 05™) | <

hoo (z(mo), "("h)(, ) = (98)(mlln) +

| 2sesimn(un (mom’) _ 5\ ™ May m + ho Ty b Do ®a(P)elihll + hoy(h) <
hoo (z{™), ||(un)(m) — (vh)(m)llh) + |lun = vallnmo + hovo(h),

IA

AN+ IA
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where P is an intermediate point. Then we deduce that

llun = vallamo+1 <
< max {yo(h), hoo (z(™0), [lup, — vallamo) + llun — Vkllamo + Rovo(h)},

mo=0,1,...,No — 1.
Let us consider the problem )
(12)  7iga = hoo (2, m) + 7 + hov(h), i=0,1,..,No—1, 70 = 70(h),
an denote by 7 its solution. Then we have
llun = vhllas < i, i=0,1,..,No.
From Assumption H; it follows that wj is a convex function. Therefore
Wit > L0 4 hoa(zD,w?) + hoy(h), i=0,1,..,No—1,

and we obtain .
"uh - vh"h.i < w}:)’ i=0,1,.., NOv

which completes the proof. [

5. Convergence of the difference method

Let us consider now the following additional assumptions

Assumption Hg. Suppose that

1° v € C(B, R) is a solution of problem (1) such that its restriction to
the set E U8 E is of class C?,

2° the operators A and § satisfy the conditions

(13) 3 sield =6, ii=1,.,n, —K<m' <N, 0<mg< No
s€S[m’]
(14) Z "ja.,m = 0, j = 1,..., n,
s€S[m’]

where §;; is the Kronecker symbol,
3° two constants &, do > 0 exist such that h; < doho, h; h'l < do,

i,7=1,...,n,and
Z Iao.ml <é¢, 2 |¢£:2.. <¢
s€S[m’] s€S[m’)
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0<mg < No, -K < m’ < N, i= 1,...,n.
Assumption H4. Suppose that
1° fe C(F x C(D,R) x R™, R) and there exists (o : I. — R4 such that
(15)
124 (2070, ™), (04)my, 805™) = £ (26, 5, v(ppmy, 89™) | < Bo(h),
0<mog<No-1, —-K <m' <N,
where P[m] = (z(m0), y(m)) v, = V) gy and

(16) lim fo(h) =0,
2° a function 7 : I, — R, exists such that
™ — ™| < y5(h) on Eo[h]U 8oE[h], and lim 7o(h) = 0.
Theorem 2. Suppose that Assumptions Hy — H4 are satisfied and u),

is a solution of ({). Then a constant ¢¢ > 0 and a function wj, : [0,a] - R,
ezist such that for |h| < €, h € I, we have

lun — onllng < w®, i=0,1,..., No,

and limp_o wy(z) = 0 uniformly on [0, a).
Proof. We put P(m,h,t) = (z("‘°),y§m’) + thysy, ..., g™ 4 th,,s,.)
and

RGP (h) = 1 (27, 4™, vty 800) = @y (29, 5, (0) ), 504™)
n
Rgm)(h’ t) = _(2h0)_1 Z Z Sithithy,-ij(P(m, h, t))a
s€S[m’]1g=1 .
Rgm)(h) =f (z(mo), y(m')’ V(Pm])» D'vl(,"')) -f (x("'°), y(m'),t-)(m),6”(m)) ,
R:(Sm)(hs t) = f (z("m) + tho, y(m’)’ Y(Q[m])» Dv”(z(mo) + tho, y(m'))) By
= (209, ™), vpm, Dyo™) , Qlrm] = (27 + tho, y™).

From Assumption Hj it follows that for every h € I, 0 < mg < No — 1,
—-K <m'’ < N, two elements t,¢’ € (0,1) exist such that 4

601),(:“) - Qh (I(m"), y('”'),(v;.)(m):liv,("")) =
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= R{™(h) + R{™(h,t) + RV (h) + R (h, 1).
Moreover, the consistency condition (15), (16) implies the estimate
|RS™(h)| < Bo(h), 0<mo<No-1, -K <m'< N, hel.

From the assumptions we deduce that three functions 8;, 8;, f3 — R4 exist
such that ’

IR (h, 1) < Bu(h), [RSV(R)] < Ba(h), |RE™ (k)| < Ba(h), t € (0,1),
where 0 < mg < No—1, —K < m’ < N, and 7(h) = T3_, 7i(h) satisfies (9). In
force of Theorem 1 we get the assertion. i

8. Difference methods of the second order

We start with a remark concerning an error estimate for the difference
method (4).

Remark2. Suppose that all the assumptions of Theorem 2 are satisfied
and o(z,p) = Lp where L > 0. Then we have

wi(z) = [r0(h) + L™ y(h)]e"* — L™'(h), = € [0, d].

Suppose that @), = ¢ on Eg[h] U 8o E[h] and that there are v, Co > 0 such that
q(h) = Co|h|’. Then we have the estimate
(17) llun — vallni < L™ Cole™® = 1]|A", i = 0,1,..., No.

We will give an example of a difference method satisfying (17) with » = 2. To
this purpose let T} : F(B[h],R) — F(B, R) be the operator we introduced in
[2] which is defined as follows. Let z, € F(B[h], R) and (z,y) = (y0,9) € B.
Here we denote by yo = z and y‘()""’) = z(mo) for — My < mg < Np. Then there
is (g™, y(m) = (z(mo),y(m)) such that y$m) <z < y{motY ym) <y <
Y™+, with m’+1 = (Mg +1,..., ma+1) and g§™, ym)), (y{motD), ylm'+1)) €
B[h]. We define

— y(m) . — o(m) 1-s
m m'4s’ y—v
09 @ = 34 () (1-240)

“s€ES*
where §* = {s = (80,5’) = (30,81, ..-y8n) : 8 € {0,1}, i = 0,1,..,n} and

(v:i‘_"'l)' = [li=o (v_-—_:;;:i)" ’ NP
(- =) - e (- 52)

(19)
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and we take 0° = 1 in (19).
Let us prove the following lemma.

Lemma 2. Suppose that z : B — R is of class C? and 2z, = 2| gy
Then there ezists C' € R such that

| Thzh = 2llcs)y < Clh|

where || - ||c(s) is the supremum norm in the space C(B, R).
Proof. We have

s 1-
DY =t I POt )
h h ’
sES* )

y-y™Y’ y—ym)"’ (m)
Z —h-— 1--—-h—— hisi=yi—y; ", 1=0,1,...,n,

8ES*

and

where y(™) < y < y(m+1), Therefore

T sese 2(mo+s0,m’+s') ( = ). (1 - ’l:{(l))l—' - 2(y0,9) =
= Ties (FE2)" (1-542) 7 (o) 4 T DysMhisit
%E?J=o hisihjs;Dy,y, Z(P)] -
- [z(m) + 300 Dy 2™ (y; = y™)) + 1 720 Dyay, 2(Q)(wi — y™))(y; - y(m’))] =

e (M) (1 2)
X 23,’:0 hi"ihjstgmjz(P)—
- %2?.j=0 Dmv,' 2(Q)(yi — y(m‘))(yj - y(mj))-

Now we have the estimate

|(Thzn)(z,y) — 2(z,y)| <
< sup {IDVilez(z’ y)l : (z’ y) € B’ "] =0,1, mv"} E?,,:o h'hJ

and the assertion follows. -
Let us assume now that n = 1, E = [0,a] X [-b,b],a > 0,5 > 0,

D = [-10,0] x [0,7], Eo = [~70,0] X [~b,b+ m], &oE = [0,a] X [b,b+ 7],
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and consider the problem

D,z(z, y) = F(zo Y, z(z,y)) + CDVZ(Z, y),
z(z,y) = ¢(z,y) for (z,y) € EqU & E,

where F : Ex C(D,R) > R, ¢ : EU&E — R and C > 0. Let

z() = thg, t=—Mo,—Mp+ 1,...,0,1,..., N,
vy =jh, j=-M,-M+1,.,N,N+1,..,K,

where Mphgo = 70, Noho <a< (No -+ l)ha, Mh; = b, Nhy < b < (N + l)hl,
Khy = b+ 7. Assume that hy = Cho. We will consider the operator T} given
by (18) in the two dimensional case.

Suppose that the function F of the variables (z,y,w) is of class C! on
E x C(D, R). We consider the difference method

(21)

(20)

2+19) = Az69) 4 hoF (20),yO), (Thz)(ppi,ip)) + hoC820)+
+3h3 [DoF (219, yV), (Thz)(pps.i7)) + CDyF (2, yU), (Twz)(piip)] +
+ih0DwF (2, yO, (Thz)(ppi,z1) (Thup) P+
+3ChoDy F (20, y0), (Thz)(ppi,i)) (Thvh)(PLi.d))»
i=01,..,No—1, j=-M,~M +1,...,N,
209) = 49 on Eq[h] U 8o E[h),
where 1,
Pli,j] = (2, y0), A0 = E[:('-J‘H) + 231,
Jz(i’j) = (2hl)-l[z(i‘j+l) - z("j-l)]v i=0,1,.,No—1, Jj=-M+ 1,...,N,

and

A269) = §263) _ Ga+1) 4 LG+,

620) = h7[—3200) 4 2209) — 126542)] for0<i< No-1, J = -M.

The functions u} and v} are defined by

(=04 = .
(22) = hoF ((2(‘),][(-’),(11};2)(1:['-.,']2) + %[z("ﬁ'l) - z('d-—l)]
.,;(z(-'),y(:')) = 320941 — 2 1i-1)]
wherei=1,..,Ng,j=-M+1,-M +2,...,N, and
un(z®,y) = TN
(23) = hoF (z(l)' y(J), (Thz)(P[l',j’)) + [_%z(‘n’) + 22("-7) - %z('-’+2)]

vp(a®, g0y = —3206) 4 2506 — § 56342,
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where i =1,...,No, j = —M. :
We define uj, and v}, on the initial-boundary set Eo[h] U 8o E[h] by

24)  ui(e®, D) = hoDzp(z,y) 020, y1) = hoDyip(z, y1).
Theorem 3. Suppose that _
1° the function F : E x C(D,R) — R is of class C! and the derivatives
D.F, D,F, D,F satisfy the Lipschitz condition with respect to w,
2° v is a solution of (20), v is of class C® on B and vj = Ly

3° uy is a solution of (21) and hy = Che. :
Then Co > 0 ezists such that

llun — vallni < Colhl?, i=0,1,...,No.

Proof. It is easy to see that method (21) satisfies stability condition
(5). Now we prove that C* € R, exists such that

(25) Jovs? — @ (29, ¥, (va)i 57, S0 ) | < C*IAP2,

0<i<No—-1, -M<j<N,

where &, is given by the right-hand side of the difference equation in (21).
For:=0,1,...,No—1,7=-M +1,...,N we have

(26)  Govl™ = Dvl) 4 %hoDzzv("j) = h3(2ho) "' Dyy v 4+ REI(h),
where

REI(h) = %Dmv(Po) — h3(12h0) ™1 Dyyy v(P1) + h3(12ho) ™) Dyyy v(Ps)
and Py, P, P; are intermediate points. From (20) and (26) it follows that

Sov(d) = F (29, y0), v(py; 7)) + CDyol™) + RE(h)+
+iho [DzF (2, ¥9, v(ppi 7)) + DuF (29, y0), v(ppi z))) (Dav)pii,in) +
+3ho [DyF (2, ¥, v(ppi ) + DuF (2,40, vep 1) (Dyv)phi.z))

Let Q[v,1,5] = (z®),yY), vpiip) and Qulv,i,5] = (2,9, (Thon)(ppi.ip)-
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A constant C > 0 exists such that ir 0 <i< No—1,-M +1<j <N
we have

|F(Q[v,34,5]) — F(Qnlv,4,5])| < Clh|?,
@n |D=F(Qlv,, 1)) = D=F(Qu[v,i,3])| < CIA[2,

| Dy F(Q[v,3,35]) — Dy F(Qn[v,14,5])| < C|h[?,

IDwF(Q[”! i’j]) - DIF(Qw[vv "J])l < éIhP

and
(28) |Dyv(9) — §0| < ClaP2,  |RGI(h)| < C|h)2.

Let U and V)’ be given by (22)-(24) where z is replaced by V}, in the right-hand
sides. Then we have

[lho Dev — ThUy llc(B) < |hoDzv — Th(hoDzv)nllc(sy + |Th(hoDzv)n — ThU||

and

[(hoDzv)n(z), y\)) — (ThU3)(z(), y )| < N

< |h0F(Q[vv ‘9]]) + ChODyv(i'j) - hOF(Qh[”9 i’j]) - hlsvf."J) < Cl|h|2’
for1<i< No—-1, -M<j<N,
[(hoDzv)a(z®, y)) — (ThU;) (2, y)) =0  on Eolh) U 8o E[h),

where C; € R,. In force of Lemma 2 and the above estimates it follows that
C; € R, exists such that

(29) lI(hoDzv)(ppi.ip — (ThUR )piipllo < Calh|?, 0< i< No—1, -M <j< N
In an analogous way we can prove that C3 € R, exists such that
(30) lI(hoDy®) (P 1y — (Th Vi )(ppispllo < Calhl?, 0 < i< No—1, -M <j < N

From (26)-(30) we deduce that (25) holds for 0 < i < No—-1,-M +1<j< N.
We obtain (25) for j = =M, 0 < i < Ng — 1 in analogous way.

Finally the assertion follows by virtue of Theorem 2 (see also Remark 2).
- .

7. Multistep difference methods for the mixed problem

Let & be given by (3) and assume that A = (A;...A;) be defined by

A = 3 alf) Lmom+a) =1k, 0<mo< No, K Sm’'< N,
s€S[m’)
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where aS;Z,. are given real numbers. Assume that for every h € I. we have
o, = (", ...,8") : Q, — RE. We define

FMlE = Ty aidianotk-in’y :
+h0 E'—l ,Q(') (z(mo+k~—|), y(m'), z(mo+k—i,m’)’6z(m°+k—"m')) ,

where z : B[h] - R and a;, 8; € Rfor i = 1,....,k. Put E[h,k]=0if k =1 and
Elh, k)= {(z(™),y™)):0<mo<k-1, -K <m' < N}fork>1

Suppose that ¢y : Eg[h]U8oE[h]U E[h,k] — R is a given functnon We consider
the following difference method

z(mot+km’) — F('")[z], mo=0,1,..,No—k, —-K <m’'<N,

(31) 20 = (™ on Eo[h] U 8oE[h] U E[h k).

Let us prove the following lemma on the difference inequality

k k
(32) AGHR) > 3" A0+ 4 hoL " |8;| AU+~ + hoy(h), 0 < § < No — k.
=1 =1

Lemma 3. Suppose that a; € Ry, B; € R fori=1,...,k, L € R are
given such that

1° for B=Y%, |ﬂ.| we have B > 0 and 3°F_, a; = 1,

2° a function v : I. — R, is given such that limy_ov(h) = 0 and
Noho < a, )

320<n” <V <. <" andlimpon’) =0, i =0,1,..,.k- 1.
Then a function \p, : {0,1,...,No} — R, ezists such that

1° 39 > 99 fori=0,1,.,k— 1, A > 3D, fori = 0,1,..,No -1,

2° ,\;. is a solution of (32) and a function \* : I, — R, ezists such that
1AD| < A*(h), for j = 0,1,..., No and limp—o A*(h) = 0

Proof. Note that the function A, defined by

A =9 forj =0,1,..,k—1 and
M) = JED(1 4 hoLBY ! + y(A)[(1 + hoLB)* ~ 1(LB)~ i L > 0
M) = 3D 4 (i + Dhor(R) i L =0,

where i =0,1,..., No — k, satisfies the thesis of Lemma 3. i
Assumption Hg. Suppose that
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1° conditions (7), (13) hold and
Z aﬁ'}n =1, E sjaﬁ';zn =0, i=1,...,k, j=1,..,n,
s€Stm’ s€S[m’]
2° there exist ¢,do > 0 such that h; < hodo, h.'hj'l < dg, i,j = 1,...,7,
3 lefl<e Y lbli<e,
s€S[m’] s€S[m’]
IS'Sk, ISan’OSmOSNO—ks"KSm’SN’

3oa; € Ry,B; € Rfori=1,..,k and we have

_k k
Yai=1, k=Y a(k-i)=Y 8,

=1 i=1 i=1

and

4° v: B - R 18 a solution of (1) and v is of class C? on B.
Lemma 4. If Assumption Hg is satisfied and A is defined by

k k
Alv, AJ0m) = gU+hm’) _ 5™ g, g;plitk=im') — hg 3~ ;D oli+k=im"),
i=1 i=1
J=0,1,.;No=k, —-K $m'<N,
then a function y¥* : 4, — R, ezists such that

AL, W™ < hoy*(h), 05 < No—k, =K Sm' SN, and lim y*(h) = 0.

Proof. Observe that P{™, P{™, P{™) ¢ R!*" exist such that

A[v’ h](m) = v(m) + khOD.:”(m) + %kzhgpzz”(l)l(m))'

- i E-GS[m']"‘szn (0™ 4 (k = §)Deo™ + T 85h; Dy, 0™+
+3(k = Yho Ty 85k Doy, o P{™) 4+ § T joa 83h385his Dy o (PE™)] -
~ho 30, BiDov(™ 4 (k — i)hon,,v(Pg""’)].

Then the assertion is an immediate consequence of Assumption Hs. =

Assumption Hg. Suppose that

1° the functions Q;:') : Q) — R, i = 1,...,k, of the variables (z,y,w,q)
satisfy the conditions
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(i) for (z,y,w) € E[h] x F(D[h], R) we have Q(i)(z y,w,-) € C(R", R),

(ii) the partial derivatives (D, Qg), D,HQ(‘)) = D, (I’(') exist on 2, and
D,8\)(z,y,q,-) € C(R", R") where (z,y,w) € E[h] x F(D[h], R),

(iii) there exists L € R, such that

188)(2, v, w,q) - ®(2,y,%,9)| < Lllw— bl on D,
2° f:Q — R is continuous and there exists Bo : I — R4 such that

IQh (z(mo)’ y(ml), (vh)(m)’ 6”;(:")) - f (z(mo)’ y(m')’ Y(P[m]))s 6v(m)) I < ﬂO(h)a

mo=0,1,..,No—1, =K <m’ <N,

and lim,_o Bo(h) = 0,
3° for mg = 0,1,...,No— 1, —-K < m’ < N, s € §[m’] we have

aiall, + hofh 3 h1e, Dy, 869 (270), 4™, w,4) > 0,

j=1

4° ¢p : Eo[h)U oE[h] U E[h,k] — R and there is vo : I. — R4 such that
ley™ — @™ < y0(h) on Eo[h]U &oE[h) U E[h, k] and lim h — Oy,(h) = 0,
5° up : B[h] — R is a solution of (31).

Theorem 4. If Assumptions Hs, Hg are satisfied then there ezists a
function A\* : I, — R, such that

(33) lun = vplln: < A*(h), i=0,1,..., Ny, Il;ln:) A*(h) =0.

Proof. For mg=0,1,...,No—k, =K < m’ < N we have

o5 — ™| < LEM (on] = B funll + [Afo, A+
(34) +ho E.=1 |Bi |f (3(m°+k-') y™), V(Plmo+k—i,m’])» va("‘o+k~'.M')) -
_q,(-) (z(mo+k-.) y(m), (98 (mo-+k=ium")» 60(mo+k—l,m ))|
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In force of Assumption Hg it follows that

IF™[on] = FYunl] < | aaf Ao 0™ — yfmorkoimiyy
+ho T, 0} (9’('"°+"“), y(""),(vh)(mo+k-.-,m'),6v,‘."’°+k"""')) -
-a{) (3("‘”"“) s 9™, (VR) (mo+k—iym)s SULTOHETI™IY |4

+ho T5, 18:1| @) (3("‘""""'"), Y™, (O mo+k—iymr)s 6uf,"‘°+""'""')) -
- (3('"°+""),3/(""),(uh)(mo+k-.',m'),5u§.’"°+k—"'"') | <

<1k Toesimy (”("'°+k-'.’""+') - “gmoﬂ-"m'“)) |laialin+
+hoBi 3= h;‘cﬁf,)an,fo)(ﬂ')]| + Lho o0, |Billlvn — whllhmo+k—i»

where P’ = (z("‘°+"“),y(""),(vh)(mo.,.k_,-_m:),Q‘) and Q* is an intermediate
point. Then we have

FMon] = F (usll S Ty eillon = unllnmosi-it
+Lh0 26:1 Iﬂilllvh - uh"h,mg-'-k-.‘.
From condition 2° of Assumption Hg we deduce that a function 7. : I. — R4

exists such that limj_.o7.(h) =0 and for 0 < mo < No—k, —K < m’ < N we
have

(35)

T I8 lf (z(moﬂ—i)’y(m')v"(P[mﬁk--‘,m'))’Dyvf.m“—"m')) -

(36) . . , Sty
-8 (z("‘”"“),y("‘),(vh)(mo+k--'.m')»5”;(.m°+k o ))l < 7u(h).

Estimates (34)-(36) and Lemma 4 imply
[lon = un|lhk+; < max {7o(h), Sk aillon = unlln kit
+Lho X5, 1Billlvn — unllnjer—i + ho‘Y(h)} y 3=0,1,..,No— k.

where v(h) = 7.(h) + 7*(h). It follows from Lemma 3 that there is
Xn:{0,1,...,No} — R, such that W = yo(h) forj=0,1,...k—1 and

) k ; . k T,
X0 > 3 X0 4ho 3o 1B P hov(R), 5 =01, No =,
i=1 i=1

and ,\gj“) > ,\g) for 0 < j < No — 1. Furthermore A\* : I, — R, exists such
that IA_;.(J)I for 0 < j < Ny and limp—o A*(h) = 0.
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Finally (33) follows by virtue of Assumption Hs. [ ]

R e m ar k 4. We wish to remark that the results of the present paper
can be extended to weakly coupled systems of differential-functional equations.
We omit the details.

8. A numerical example
Let £ = [0,1] x [0,1] x [0,1], D = {0} x [0,0.5] x [-0.5,0] and
BE = ([0,1] x [0,1.5] x [0.5,1])\ ([0,1] x [0,1) x (0, 1]).
We consider the following mixed problem
(37)
Dzz(z, y) = (1 + :cyg)[D,,, 2(37 y) + sin Dlﬂ z(zv y)]-

—(1 4 zy1)[Dy, 2(z, y) — cos Dy, 2(z,y)] - 2 [, z(z,y + s)ds+
Hi + 20(14 2%)72(2,9) + fola, ),

z(0,y) = I(yf +y3) for y = (n1,¥2) € [0,1.5] x [-0.5, 1],
z(z,y) = 3(v} + ¥3)(1 + 2?) for (z,y) € HE,
where

fo(z,y) = —(1 + zy2) sin(y + p2?)-
—(1 + z3) cos(y2 + y22?) — (1 + 2%)[§ (1 — v2) — %]-
Let us consider the difference equation
(38)
Zmo+1,m’) — Aa(m) 4 b, {(1 b z(mo)yg""))(al 2(m) 4 sin 6, 2(™))—
-1+ z("“')ygm’))(&gz("‘) — o8 832(™)) — 2 [ Ty (z(™mo), y(™) 4 s)ds+
+ [§ + 22(mo)(1 4 z(mo)g(mo))=1,(m) 4 fmt,
mo = 0, 1,...,No — 1, my = 0, 1,..., M1 - 1, mq = 1,2,...,M3,
with initial-boundary conditions
20m) = (™2 4 (48m)2] for 0 < my < Ny, —N3 < mg < My,
2™ = 3[(u™)? + B5™))?)(1 + (2(™))?) on BE[h],
where Noho = 1, Mihy = 1, N1hy = 1.5, =N3hy = —0.5, Mahy = 1 and T}, is
defined by (18), (19) with » = 2 and

Az(m) =

= L[z(momi+lima) 4 H(mosmi=1,ma) 4 2(moimimat1) 4 5(mosmima-1)]
512("') = (2hl)—1[z(mo.m1+l,mz) - z(mo.m;-l,mz)]’

§22(m) = (2hy)~1[z(mom1ma+1) _ ;(mo,m1,ma—1)]

(39)
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formg=0,1,...,No—1, 1 <my < M;-1,1<my < My -1,

and

(40) Az(™) = 2(M) | §,2(m) = pT1[p(momitlima) _ o(m))

5,2 = hz—l[z(m) - z(Mo.Mx.ma—l)]’ mo =0,1,...,Ng— 1,

if my = 0',

1<my< Maormy;=Mp 1<my;< M;-1.

Note that method (38)-(40) satisfies condition (5) for h; > 10hg,
ha > 10ho. Let u and v, be solutions of (37) and (38)-(40) respectively.

Let Q;nm) = v;lm) - u(m), mg = 0,1,...,No, my = 0,1,..,M;, my =

0,1,.., M.

Suppose that Ng = 400, My, = My = 40, ho = 0.0025, h; = hy = 0.025.
The values Q\*°*™™2) are listed in the Table below.

Table of errors for z = 1

n = 0.125 ¥ = 0.375 v = 0.625 ¥ = 0.875
y2 =0.125 2.080 x 10~2 1.788x 102 1.554 x 102 1.163 x 10~2
¥2 =0.375 5.211x 1072 4.541 x 10~2 3.836 x 10~2 2.115 x 10~2
y2 =0.625 7.396 x 102 6.358 x 10~2 4.956 x 10~2 2.216 x 10~2
y2 = 0875 8.604 x 102 7.095x 10~%? 5.081 x 10~2 2.051 x 10~2

During the computation a computer IBM AT was used.
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