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In this paper, we derive a general transformation formula which involve two different
bases and also discuss a few interesting special and limiting cases of this transformation,
including two classes of identities of the Rogers - Ramanujan type.

1. Introduction

As is well-known, there is an innate relationship between the transforma-
tion theory of basic hypergeometric series and hypergeometric identities. The
celebrated Rogers-Ramanujan identities are the most well-known illustration of
this relationship in the unibasic case. The pioneering work of Andrews [3]
and Agarwal and Verma ([1], [2]) on basic hypergeometric series involving
two unrelated bases has provided the impetus for an extensive study of trans-
formations connecting basic hypergeometric series with two different bases (see,
for example, Verma and Jain ([12], [13], [14]), Gasper [6], Gasper and
Rahman (7], and Rahman [9]). The relationship between transformations
connecting basic hypergeometric series involving two different bases and identi-
ties of the Rogers-Ramanujan type has been studied in some detail by Verma
and Jain ([12], [14]). Their work has led in turn to a whole new wide class of
identities of the Rogers-Ramanujan type involving either moduli greater that
five or double series or both.

In this paper, we shall first derive a general transformation formula in-
volving two different bases, and then discuss a few interesting special cases,
including two classes of identities of the Rogers-Ramanujan type.
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2. Notation
For |p| < 1, let ([11];p.90)

(a;p)o =1, (a;p)n = (1-a)...(1-ap™ "), n > 1;

((84); P)n = (15 P)n---(a4; Pn); (a5 P)oo = [ [la; 0] = ﬁ(l - ap™?).

n=1

A generalized basic hypergeometric series is defined ([8]; p.4) by

APB

(A), P; ((@4);P)n2" _( 1\n (;) B-
] D R (T A A

with ( '2' ) = n(n — 1)/2, where p # 0 when A > B + 1. Further, let

_ ((29); )n((BR); ¢°)n
((7Q); 9)n((85); ¢*)n’

(")
(a,b;9)ng 2

(g 9)n(abg; ¢®)n

and

Fo(a,b) =

3. We shall prove the following general bibasic transformation formula:

/31 ( n+1 )
(1) S Fany Ci0m 2 g,

= = (@69

( ) ( b ) ) ( b 2) ,\( n+1 )
95 9)o0\ a9, 99; 47 )oo ay0;9")n 2 ,
(abg; ¢')oo 2 (6:9)n Enbr

where 8, is any sequence of numbers, real or complex.
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Proof. In view of the g-analog of Gauss’s second summation theorem
([4); eq. (1.8)), we have

(2) Z Fr(ann,quﬂ) = H[_q’ Q] H [ :g;:::—l 2n+1;q2 ] .

r=0

X ( n+1 )
Multiplying both sides of (2) by E,f,q 2 and summing from n = 0 to
00, we get
( n+1 )
oo A 9 )
E E.b.q Z Fr(aqzn, qun)

n=0 r=0

- ,\( n+1 )
. 2 aq2n+l bq2n+l; q2
= H["qv QJ'gEnonq II [ abq"‘"‘i .
On replacing r by j — 2n here and changing the order of summation, we get the
following transformation:

R (¢73; 9)an(aba; ¢?)a A( n; 1 )
3 F;(a,b i ! %q E,0
@ ,Zo (@ )nZ_o (@ biq)am "

oo "( " ; ! ) ag?™+1, bgintl; g2
= H[“q; q]"E_oEnonq H [ abq‘""'; ’ ] .
Replacing R, S and Q now by R+ 4, S + 4 and Q + 1, respectively, and suit-
ably choosing the nine new additional parameters, we easily get (1) after some
simplification.

We shall now discuss a few special cases of (1). We first deduce four
summation theorems.

(i) Let ustake P=0=R, Q=1=85,7m = —¢q, 6, =¢, A =0 and
0, = (¢/ab)" in (1). Then, summing the series on the right of the resulting
transformation by the g-analogue of Gauss’s theorem ([11]; eq. (3.3..2.5)), we
get

I Y R

=0
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_ c/a, c/b, aq, bg; ¢* .
H[ c/ab, abq H[ ¢ q)-

(ii) Let ustake P=0=R,Q=1,S=2,11 = —¢q, 6 = —¢?, 8 = ¢,
A=2,0, =(c/q?*)" and a = ¢*/b in (1). Then, summing the resulting series on
the right of (1) by the g-analogue of Bailey’s theorem ([4]; eq. (1.9)), we get

(5) 3 Fi(d/b, b)2¢a[ b T g “]
i=0

_H[Q\/_v _‘I\/_- Vbe, —Vbe, ¢/b, bg; qn]H[_q;q].

(iii)Ifweta.keP:O:R,Q: 1=S,7m=-q 6 =ag?/byA =0
and 8, = (—¢?/b)" in (1) and sum the resulting series on the right of (1) by the
g-analogue of Kummer’s theorem ([4]; eq. (1.7)), we get

(6) Z:FJ(G b2 [ a;:}b Q'J"'l; q’; —-q'-'/b ]

=0
a, —qva, 2abv "2ab1 —2’ , bq; 3
=H[:;{;b _%; "‘,ﬁ,;/ ¢*va/b, —¢*, aq, bg; g ]m_m].

(iv) Lastly, let us take P=0,R=2,Q =158 =3, B = /¢, B2 = — /¢,
71 = qVab, 6, = —q\/ab, 63 = ¢, A = 0 and 8, = ¢*" in (1) and assume that b is
of the form ¢—2N (when N is a positive integer). Then, summing the series on
the right of the resulting transformation by the g-analogue of Watson’s theorem
[5), we get the following summation theorem:

- -Jj —j+l. 2. 2
) ZF(a b)4¢3[ _qu':_,b’ qc’, g g% g ]

=0
7, 2 2 2
7 ag?, c¢*/a, cq?/b; ¢* aq, q .
@ H[ abq cq®, cq*/ab H abq H[ ¢.4)-

4. Finally, we consider a particular case of (1) and deduce from it two
classes of identities of the Rogers-Ramanujan type.

Letusta.keP:O,R=4,Q=1,S=5,ﬂ1=q2\/5,ﬂ3=—q2\/5,
B3 = ¢, By = d, N = —q, 6 = \/Ey 6 = —\/E’ 03 = aqzlb’ by = aqz/c’
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85 = aq?/d, 0,, = (a?/bed)" and A = 2m, m = 1,2,.. in (1). Then (1) becomes

2m n+1
Li/2] i ( 2

(¢*va, —q*\/a,¢,d; 4*)n(q77; )2ng n
®) EF (a:8) 3 (¢%,va,—+/a,aq?/c, aq’/d?aqzlb; %) (a*/bed)

n=0

( n+1 )
2m 2
_ (=419)0(29, 45 ¢*) o i (a,9’va, -¢*Va,b, ¢, d; ¢*)ng y
(abg; ¢*)oo (4%, va,—V/a,aq?/b,aq?/c,aq?/d; ¢%)n
x(a?/bed)™.
If we now make b — 0 and ¢,d — oo in (8), we get the following trans-

formation:

/2] i
(1 - aq4ﬂ)(q-3; Q)2n n_(m+1)n24(m-3)n
9 E Fi(a,0 E -a
( ) J"O J( )"_0 (qz;qz)n ( ) q

= (@;¢*)a(1 — ag*™) 2
= (-4:9)o0(a4; ¢*)oo Y q(q'; o 4 (—ayrgmt e +m=3m,
For a = ¢2, the series on the right of (9) can be seen to be transformable into
a bilateral series which can be summed with the help of Jacobi’s triple product
identity ([11]; eq. (3.5.8)). We thus get the following identity, which is believed
to be new:

n=0

- (J+1)w2] N
(10) 2(1 — q.‘H-l )q Z —4q )(q ) q)2n(_1)nqmn3+(m_g)n

jourd — (4% ¢%)n

- H(l _ q2mn—2)(1 - qzmn-2m+2)(1 o q2mn)(1 + q")(l ac qﬁn—l),

n=1

where m = 2,3....
In particular, for m = 3, we have

oo (J;l)bﬂ] 4"+2(_J,.
(1) S (-¢*e Z ek il [C AT ) TP

= — (9% ¢*)n
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= H(l - q8n—2)(1 - an-4)(1 _ qcn)(l +qn)(1 _ q2n—1).

n=1

It may be noted that if we compare (10) with the following generalized
hypergeometric identity ([10]; Theorem 2) of the Schur-Gleissberg type (for
r=2):

2mn-r)(1 - 2mn—2m+r)(1 _ q2mn) _

1-
(12) H ( (lq— )

{H[ q,q]} 2 o—-——B'("q‘(qr)"q),

where 1 < r < m and By, (7, q) are certain polynomials ([10]; Theorem 2), we
get the following interesting transformation:

S(1 = g+ ("’s‘)w g*"+) (g~
(13) j;o(l"?’ )q | E (@ ¢)n

n=0

’q)z"l l)n mn’+(m—2)n

- = e 2»—1 Bm.t(2vq)
-LI:(I L ),Z..; (659) °’

where m = 2,3, ....
Again, if we take ¢ = ¢ in (8) and make b — 0, d — oo, we get the
following transformation:

[J/ll_ 4n ,2” J. ﬂnmn’ S~
(14) ZF(a o)z( aq(q)z(qaq,gz)(: Qan n mn +(m-3)

=0

) — anin 2 2
= (-5 Deslag )0 3 & "(33 ron e Zzgg;q Prangnet o,

n=0

Proceeding as in the case of (10) above, we now get the following identity, which
is also believed to be new:

= (j i )b‘/nl —
15) S (1-g*)g 2 ) (1+¢*™*') (a7 q)am g Hm=1n

= = (4% ¢%)n
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©
= H(l + q2mn-—l)(1 + q2mn—2m+l)(1 - q2mn)(1 + q”)(l _ q2n—l),

n=1

where m = 1,2, ....

I am grateful to Dr. V.N. Singh for his kind guidance in the preparation
of this paper.
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