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Arithmetic Functions Defined on Sets of Primes of Positive
Density! ,

Jean-Marie De Koninckt, Aleksandar Ivictt

Presented by P. Kenderov

Several asymptotic formulas are proved for arithmetic sums, which involve the largest
prime factor of an integer and certain large additive functions. All the functions are defined
on a set of primes having density § (0 < § < 1) in the set of all primes.

1. Introduction

Let Q be a set of primes such that there exists some constant é satisfying
0<é<1and

(1.1) r(z,Q):= Y 1=5Liz+o(—i—).

B
p<z, PEQ log™ z

Here and later p denotes primes, Liz = [; 54-“—,, and B is a constant satisfying
B > 2. 1t is possible to treat the case when one assumes only B > 1in (1.1) (see
R.Warlimon t[14]), but as in [3] and [11] we find it sufficient to assume
B > 2in (1.1). In fact, the present work may be considered as a continuation of
the first author’s work [3] and the second author’s [11]. All the relevant notation
from these papers will be retained here. We define P(n,Q) as

(1.2) P(n,Q) = { :,nax{p FHSRES gtflz;v?il:, B

where (n,Q) > 1 (resp. (n,Q) = 1) means that n has a prime factor (resp. has
no prime factor) from Q. Thus P(n, Q) is the largest prime factor of n belonging

!Research of the first author supported by grants from NSERC of Canada and FCAR of
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to Q, and analogously we define the k-th largest prime factor of n belonging to
Q as

(1.3) Pk("sQ)={5 (mﬁﬁmm’q) if Q(n,Q) 2 k,

otherwise,

if k > 2, where P;(n,Q) = P(n,Q) and

(1.4) An, Q)= > o«

r%|In, PEQ

is the total number of prime factors of n belonging to Q, while

(1.5) wn Q)= > 1

pln, PEQ

is the number of distinct prime factors of n belonging to Q. Here as usual p*||n
means that p* divides n, but p®*! does not. The functions defined by (1.2)-(1.5)
are the analogues of the classical functions

P(ﬂ.) = ma-x{p : pln}, Pk(‘n) = { P (P]luf...npp,_lln;) if Q(n).Z k,
0 otherwise,
if k> 2, and
Qn)= > ap, w(n)=) L

Pein pin
Likewise in [11] we defined large additive functions

(1.6) Bn,Q)= Y p BnQ)= Y oap

pln, PEQ r%lIn, PEQ

and B(n,Q) = B(n,Q) = 0 if (n,Q) = 1. The functions in (1.6) are the
analogues of the large additive functions

B(n)=Yp, B(n)=)_ ap,
pin p%|In

for which there exists an extensive literature (e.g. see the monograph [4] and
the papers (1], [5], (7], [8], [12], [15], where references to other works may be
found).
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In [3] the first author proved

(1.7) Z P(n Q) (ﬂ(Q)+ ° (10811083)) (10823)8’

n<lz

where 7(Q) is a positive constant dependmg on Q (i.e. §) which may be written
down in closed form. In general 2,.<, 1/f(n) denotes the sum over n not
exceeding z for which f(n) ;é 0, so that

' 1
,é; P(n,Q) - nSz’%;le P(n,Q)

Several results involving 8(n,Q) and B(n,Q) were established by the second
author [11]. For instance, it was proved that

z 2
(1.8) > 8mQ) = Y 2 +0 (57)

n<z J<B
with explicitly given constants A;,
(1.9)
Q) =46 E g y
Z,:,(B(" ,Q) - B(n,Q)) = szloglogz + E(Q) + = }; 10,;: +0 (E;rz)

aw) ¥ B Q) IO Q)_A(Q)z+o( tlogz) (4(Q)>0),

n<z

and

'B(n Q) z loglog
(111) 2 ) = +°( (log 2)8 )

where the constants in (1.9) and (1.10) are effectively computable, and in view
of (1.9) it is seen that (1.8) remains valid if 8(n,Q) is replaced by B(n,Q).
Moreover it was conjectured in [11] that

n<z

(1.12) Z; ﬁ(n’Q) (m(Q)+0 (10311033)) (lo:,)s’
and
(1.13) E'B(nl,Q) = ("2<Q)+O (losllosz)) (lozz)"
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with 0 < 72(Q) < Mm(Q) < 7(Q), where 7(Q) is the constant appearing in (1.7).
It is the aim of this paper to establish the asymptotic formulas (1.12) and (1.13),
and to prove some other results involving the functions (n,Q), B(n,Q) and

Pk(n’ Q)'
2. Statement of results

K.Alladiand P. Erd & s [2] proved that, for any fixed k > 2,

(2.1) Y EH -t uge (@),

2<n<z

where the a;’s are effectively computable positive constants. Thus the asymp-
totic behaviour of the sum in (2.1) changes with k. However all the sums of
Pi(n,Q)/P(n,Q) are of the same order of magnitude, which shows a complete-
ly different behaviour. Qur result is contained in

Theorem 1. For any fixed integer k > 2 we have, with a suitable constant
Cr(@Q) >0,

Pi(n, Q) 1 :
(2.2) 2 _}:(n_,QT = (C"(Q) +0 (loglog z)) (log z)®”

n<z, ("’vQ)>1

Actually it will transpire from the proof that

(2.3)
1 1
Ck(Q)—C(Q)E: > Lo(m) 2: — >, — Y
m=1 nzP(M) an u-xZn-z Pk-1 Pk2Pk—1 P
P1€EQ P2€EQ Pr-1€Q PLEQ

where C(Q) is the constant appearing in Lemma 4, £o(y) is given by (3.8), and
P1, P2, ..., Pk denote primes. The multiple series in (2.3) is easily seen to be
convergent by the prime number theorem, Lemma 6 and Lemma 2. The method
of proof of Theorem 1 may be used to treat some other arithmetic sums, such
as

Pi(n)

(2.4) Po(n)’

n<z, Q(n,Q)>m

where k > m > 1 are fixed integers. Also this method may be used to treat two
sums related to the sum in (1.11). We shall prove
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Theorem 2. There exist constants 0 < Dy(Q) < D2(Q) such that

ﬂ(n’Q) 1 x
25 By =2+ (Di1(@)+0 :
) "Sz,%:.obl P(n,Q) ~ ° ( (@) (1081082)) (log z)*
and

B("’9Q) _ 1 A
>0 ns=.§o)>1 P(n@ " (DQ(QH ° (loslosx)) (log z)*

The explicit expressions for D;(Q) and D2(Q) will be given in the proof.
The next result establishes the asymptotic formulas (1.12) and (1.13). This is

Theorem 3. There exist constants 0 < 72(Q) < m(Q) such that

1 1 z
@0 nSz.%‘?Q)>l A(n, Q) ~ (m(0)+ 0 (loslosz)) (log z)®
and

1 1 z
ey %‘qu = (m(o) +0 (loglm)) i

The asymptotic formulas (2.7) and (2.8) display the difference in be-
haviour of B(n) (resp. B(n)) and B(n,Q) (resp. B(n,Q)), since it is known
that
(2.9)

1
Z Bn) = z exp {—(2logzloglog )V 4+ 0 ((logzlogloglag ,)1/2)} .
2<n<z

The asymptotic formula (2.9), which remains true if (n) is replaced by B(n) or
P(n), was proved in [10], and then sharpened in [12] and [8]. This is analogous to
the difference in behaviour between the sum of reciprocals of P(n) and P(n,Q),
as noted in [3] and [11]. The difference in behaviour between P(n) and P(n,Q)
is also reflected in the asymptotic behaviour of two further arithmetic sums
which contain the logarithms of these functions. The results are

Theorem 4. There exists an effectively computable constant B such that
1

1
mteriieizerenie 2t ] .
(2.10) 2<E,.<, niog P(n) e'loglogz + B+ O (l z) 5
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where v is Euler’s constant.

Theorem 5. There exists an effectively computable constant F(Q) > 0 such
that

(2.11) > m = (F(Q) +0 (@%&)) log!~% z.

n<z, (n,Q)>1

Theorem 4 sharpens a result of J. M.DeKoninck-R.Sitaram
achandrarao [6], who obtained

1
—————— =¢"loglog z + O(1);
25;9} nlog P(n)

their paper contains a discussion on earlier results on this problem. The bound
for the error term in (2.10) is of the correct order of magnitude. This was kindly
pointed out to us by G. Tenenbaum.

3. The necessary lemmas

This section is devoted to the lemmas needed in the sequel.

Lemma 1. For 2 < y < z we have uniformly

(3.1) Y(z,y)= Y, 1< zexp (-— log 2 ) )

n<z, P(n)<y 2108 y
while for exp ((loglog z)%/3+¢) < y < z we have the asymptotic formula

log(u + 2)) } log z
3.2 z,y) = zp(u 1+0(——— , U= —
G2 @)= e e
where the error term is uniform. The Dickman - de Bruijn function p(u) is the
continuous solution of the equation up’(u) = —p(u—1) with the initial condition
p(u) =1 for 0 < u < 1. It satisfies

(3.3) p(u) = exp{—u(log v + loglog u + O(1))}.

These are standard results on %(z,y), to be found e.g. in G. Tenenbaum
[13].
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Lemma 2. For £ > 1 fixed,

1
> € o
£ nlog PR < gtz

Proof. By partial summation the above sum may be written as

1 1 1 »P) °°v/:(t,p)
z,:plog‘p ,,.Z m - EPIOS‘P( ’ +/ dt)

>§ P
P(m)<p

= + X2,

where in ¥, summation is over p < /7 , and in 23 over p > /z. Then using
(3.1) we obtain, after change of variable F'L = u, ﬁ-’,‘f- =y,

1 (s, [ttt
N L Eplog(p(ez"-’./,, ezut)

P<VE
< Zplgf-l e~ = / ﬁo‘s—-do+0¢( ! )

-1
p<vz vlog v log*~" z

1 log z/ log 2 1
B cm—— §=2o=9/2 gu 4+ Os(1 i
logf—l 2 (L Yy e y+ C( )) <¢ logg_l 2’

where we used the prime number theorem in the form

(3.4) 7(z) = Z 1=Liz+ A(z), A(z)=0 (ze'\/m) b

p<z

The trivial estimate ¥(z,y) < z gives

e ¥ (62 [un,)

v 220 o AN /p
1 1 ([*dt. [*t)
< ——+ / S 4 / P) g
logt z pg; plogép ( z/p ¢ A T
! 1 [ ¥(tp)
€ ———+ 122 dt.
logtlz p§; plogép t?
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Finally by Lemma 1 the last sum is

1 o logt dt 1 1
<¥ o [ WL Y <
oz Plog’p Jp t " SoplgtTlp T logt e

R e m a r k. By elaborating the method of proof given above, it can be shown
that there exists x(£) > 0 such that

1 () (loglog z)*
,g, n(log P(n))t  logt-'z | 0 ( logt z ) ’

Lemma 3. If p(n) is the smallest prime factor of an integer n > 2, then
uniformly for2 <y <z

x
(3.5 Y, 1<« —.
ngo pm)>y 1B

This is a well-known sieve bound. For a thorough discussion of estimates
for the sum in (3.5) the reader is referred to G. Tenenbaum [13].

Lemma 4. There is a positive constant C(Q) such that

il S 1=(c@+0 (i) mr

n<z, (n,Q)=1

This is Lemma 5 of J. M. De Ko n i n ¢ k [3], and follows from the work
of D.A.Goldston-K.S.McCurley [9].

Lemma 8. If 2 < y < €!°6" % for some 0 < a < 1, then uniformly
’ 1 2
3.7) > 1= (c@+0 () e
n<z, (n,Q)>1, p(n)>y log log z (log z)
where C(Q) is the constant appearing in (3.6), and

(38) tw= I (1-3)-

r<v, PEQ
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This follows, in the special case when y < €'°8° | from Lemma 7 of [3]).

Lemma 8. If £y(y) is given by (3.8), then there is a positive constant vQ such
that .

(3.9) lo(y) = (VQ +0 (1?;‘;)) log?~1y.

This is Lemma 8(i) of [3]. One has
log ‘Q(y) b ZpSy, PE€Q lOg (1 - %)
= —Zpcu @ ~ Lm>2 w Lp<y, peQ 7%
= ZPSV. PEQ % - ZPS]{ % - Zmzz. PEQ R}F +0 (i‘)

= J3: 742 ~loglogy + D(Q) + 0 (,o-h)

with some constant D(Q). If we use (1.1) and integration by parts to
evaluate the above integral, then we obtain (3.9) by exponentiating (3.10).

(3.10)

4. Proof of Theorem 1 and Theorem 2

We pass now to the proof of Theorem 1. A detailed proof will be given
only for the case k = 2, and it will be indicated how to treat the general case,
which is merely technically more complicated than the case k = 2. In evaluating

P2(n’ Q)
S(z):= B
nSr.%EQ»l P(n,Q)

first note that the integers n for which P(n,Q) = P(n) contribute < z/logz,
which follows from (2.1). If P(n,Q) < P(n) and n contains at least two prime
factors p,q € @, then n may be uniquely written as
(4.1)

n=mpgr, P(m)<p< ¢ p,q€Q, (r,Q)=1, p(r) > p, P(r) = P(n) > q.

Hence we have

(4.2) S(z) = 3 ’E’ +0 (lo:z) .

mpqr<z, P(m)<p<q; p.g€EQ
(r,Q)=1, p(r)>p, P(r)>q
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Trivially in (4.2) we need to consider only p and q for which

P 1
-2>
q " logz’

(4.3)

and we shall show now that we may consider only those m for which
(4.4) m<els)®  (s<cac<i).

Namely from Lemma 3 and Lemma 2 (with £ = 2) we have

p
)3 AEEED YD >
mpqer<z, P(m)<p<a; P.9€Q ellog ) <m<z P(m)<p<q
(n.Q)=1, p(r)>p, P(r)>q, m>elos* = e -

> 1

r<HES p(r)>p

Qs

1 1 1

<z Y =3 —3=
cios o gmez ™ p3P(m) 8P 435 9
1 x

< z m(log P(m))? < (log z)>’

ch(hl z)e

which is absorbed by the error term in Theorem 1 if § < a < 1. Likewise we
may suppose that

(4.5) p<elos?)® (f<ac<l),
since by the preceding argument we obtain

P 1 1 z
> R LY m > plog’p<(1°sz)"°

q a
mpqr<z, P(m)<p<q; P.9€EQ Zellog )@ e(log x)
(rnQ)=1, Wr)>p, P(r)>q = P>
mge(log 2) | p5 e (log 2)*

In the portion of the sum in (4.2) for which the conditions (4.3)-(4.5) hold we

have .
mpq < mp*logz < €301°6%)% log z,

hence for these m,p and q we have

log(mpq) 1 a-
“8) — (I#E) = 1011;;- (1+0(°‘10;":q )) = jogz (110 ((og2)* ™).

Further the condition P(r) > ¢ may be omitted, since by using Lemma 1 we
obtain
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Limgetion )2 L p(m)<pgeton)® P Lpgo<plogs § 2or< e, P(r)<q |

(4.7)
log(=z/m;
€2 Tcuton s & Trimspeeon 1 Cpagpiogs e HH1 T,

and by (4.6)

log(z/mpq) _ llogz _ 1 log z 1-a
- > =
log ¢ = 2loggqg ~ 2logp + loglogz = 3(logz)

Hence the contribution of the left-hand side of (4.7) is

1 1 1
< zexp (-E(logz)l"") Z — E >logp <

m<ellog =)@ m P(m)<p<ellos z)*

< zexp (—ll—o(logz)‘-") ,

which is negligible. Finally by using Lemma 5 and (4.6) we obtain

S(z) = og ) og x)* og = 1 r<s 1
)= Emgeorrr Lrmsrggoe P Erssgies 1 L 100,
+ 0 ()

@8 - (C@+0 (mhes)) iy et &
P P(m)sp<.('°t ne £Q(p) x x ErSGSrms Jz' +0 (n:";)?)
- (c@+0 () @
where -
EQ=Y & ¥ Y 5
m=1 pzpz(m) 12'

This follows since, by using Lemma 2 and Lemma 6, we obtain,
nge("'l =) % 2 p(m)S:é.q(hc ae £o(p) ZrSvferQIou ;11
- 1
= stam )Y m b P(m)s:écq(hc ne £o(p) 2:%5 ;15' +0 ([:;}?)
= Lmgellos 1) Z’z»:(é") £o(p) 2:55 ;‘I +
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+0 (Tmgeosns & Tpoeos = smany=s) + 0 (ikz)
= E(Q)+0 (Tmsetorsr % p2pm) gy ez %) + 0 ((logz)°-1)
= E(Q) + 0 (2m>e(‘°l z) m(Tg-};}—m))_m) +0 ((log 2)0(6—1))

= E(Q) + O ((log z)>¢-1).

Theorem 1 for k = 2 follows then from (4.8) with C2(Q) = C(Q)E(Q).
To treat the general sum

o= Y BB k23 00024
n<z, (n,Q)>1

one proceeds similarly as in the case k = 2. Again we may suppose that
P(n,Q) < P(n) in view of (2.1). If n has at least k prime factors from Q
(otherwise Px(n,Q) = 0 by definition) then we may write n uniquely as

n=mpip2...;k7, P(M)<p1 <...<pki M E€Q,...,p; € Q;

(49) (T, Q) =1, P(T) > PhP(T) > Pk-

Furthermore we may suppose that
(4.10) 2> 10;%’ m< R p < dBE (5<a<i),

using the same arguments that were used in the case k = 2. Likewise the
condition P(r) > p; may be discarded, and from (4.9) and (4.10) we shall
obtain

Se(z)= 0 (i)
+ Zm<¢'°l° = 2 P(m)<py <108 = n Em <p2<pylogz ...
- P1EQ P2€Q

1 b 1
Pr-1SPx<py log = r<z/(mpy...py) .
Lrnas PLEQ P = (1 Q)=1, Hr)>p

To evaluate the innermost sum we apply Lemma 5 with z replaced by z/(mp; ... pk)
and y = p;, which is possible in view of (4.10) and p; < p2 < ... < px. The
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ensuing estimations are performed as in the case k¥ = 2. Theorem 1, with Cx(Q)
given by (2.3), readily follows.

We turn now to Theorem 2. We shall prove only (2.6), since the proof of
(2.5) is quite similar. If U(z) is the sum appearing in (2.6), then

B(n’Q) - P(n, Q)
"S=-§Q)>l n<z, (n,Q)>1 P(n’ Q)

= Ur(z) + Us(),

say. By using Lemma 4 we immediately obtain

Ur(z) = [z] - Z l=2— (C(Q)+ 0 (logllogz)) (10;3’)5’

n<z, (n,Q)=1

so it remains to evaluate Uz(z). From (2.1) we have

) B(n,Q) - P(n,Q) _ )y Py(n,Q) + Q(n, Q)P5(n, Q)
n<z, (n,Q)>1 P(r,Q) < 2<n<z, (n,Q)>1 P(n)
F(n,Q)=P(n) =n=
z
logz’
since forn >2and k> 1
Pi(m,Q) < Pu(n), 0(n, Q)< 0n) < 22

For the remaining n counted by Uz(z) the decomposition (4.1) holds, since the
sum is non-zero only if n has at least two prime factors from . Thus we have

(4.11) Us(z) = > p+BSm’Q) +0 (éz-)

P(m)<p<q; p.9€Q
(r,Q@)=1, p(r)>p, P(r)>q

since

B(an) - P(n’Q) = B(mpq’Q) -—q= p+ B(m9Q)
by the additivity of B(n,Q) (see (1.6)). We may suppose that the condition
(4.3) holds, since

E p+ B(m,Q) < Z p(1+ Q(m))
mpqr<z, p,q€EQ g mpqr<z, p,9€Q g
P(m)<p<q, p/a<1/log= P(m)<p<q, p/a<i/log =
(r,Q)=1, p(r)>p, P(r)>q (r O)-l “P(r)>p, P(r)>q
zloglog z
< .
- logz E r) < " logz

n<z
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We may also assume that (4.4) holds. Namely we have, for any fixed ¢ > 1, that
the contribution of the sum in (4.11) for which m > €l°€° * ig

< ¥ oam Y ey 2 1

elos® sem<z p>P(m) a2p rs-;.%. (r.Q)=1, p(r)>p
Q(m) 1 (m)
<z Z E P E 2
eos® s em<z ™ >P(m) log p el o8 s em <z mlog® P(m)
- 2 Ym) 1
iy ™I T ologT P
1/c c—:‘-
Qe 1
< (¥ (m) ™ ~
m<z m m>elog® = m(log P(m))c—
< z(log z) *¢ loglog z.

Here we used Lemma 3, Holder’s inequality, Lemma 2 with £ = 1 , and the
elementary estimate

Z Q°(n) <. z(loglog z)°

n<lz

if ¢ is an integer. Since a < § < 1 and

. 1l—a-ac
lim —m — = -0,
C—+00 C

it follows that the above contribution is certainly < z(log’ z log logz)~!if cis
a sufficiently large integer. Similarly we may assume that (4.5) holds, since the
contribution of p > €98 = s

Q(m) 1 -2 z loglog z
<z E E < zlog® zloglog z-(log z) ™% = ———2—,
medee® s m padere s plog (log z)~

and that the condition P(r) > ¢ may be omitted. Thus following the method
of proof of Theorem 1 we obtain, by using Lemma 5,

Be = Y Y e+Bme@) Y 1 Y 1

log & log ™ <qSplog
N SR T

+ O ( 2 )
(log z)% log log =
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C(Q)z > > (p+B(m,Q))a(@) ), =

5 2
(Iog z) m<elo8® = P(m)<pgelos® = PSgsSplog s 1
= PEQ q€Q

+0 ((log x):l:og logz)
(pr@+o (greez)) g

where

412) DQ=C@Y T (+BmQ)er Y

m=1p>P(m), p€EQ 92p, 9€Q q

Hence we obtain

U@ =2+ (D4Q) - C@+0 (imie7) ) Ty

which proves (2.6) with Dy(Q) = D5(Q) — C(Q). In proving (2.5) we shall
encounter w(m) instead of Q(m), which is harmless since w(m) < Q(m). The
only change is that, as 3(n, Q) counts the sum of distinct prime factors of n which
belong to @, in the ana.logue of (4.11) we shall suppose that P(m) < p < g, as
the cases when P(m) = p, p = q will make a negligible contribution. Hence the
constant analogous to D (Q) of (4.12) will be

i(Q)=C(Q)Z Y +BmQNp) >

m=1p>P(m), p€EQ 9>p, 9€Q

which will clearly give 0 < D,(Q) < D2(Q) in Theorem 2. The essential reason
why the method of proof of Theorem 1 could be extended to yield Theorem 2
is that one encounters §2(m) at various places in the estimations (coming from
B(m,Q) £ Q(m)P(m,Q)). Since Q(m) has average and normal order equal to
loglog m, all the estimates are only affected by this factor which is small and
therefore harmless.

5. Proof of Theorem 3
We shall prove (2.7) only, since the proof of (2.8) is similar. We have

2»5:, (n,Q)>1 m = Y nge, (n Q)>l ;;('LQ-; +3n é: Q(n-q):)l m
(5.1) = ey 3-(-‘-5; +0 (l;*"—

"°)<
= T(:c) +0 o‘,) :
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say, since (2.9) holds with P(n) in place of 8(n). If n is counted by T'(z), then
n can be written uniquely as

(5.2) n=mr, (r,Q)=1, p(r)> P(m) € Q.
Therefore we have
1
(53) T(z)= Y, B(m. Q) > 1 = Ti(z) + Tz(=),
m<z, P(m)€Q 7% r<z/m, (r,Q)=1, p(r)>P(m)

say, where in T3(z) we have m < €!6°% (§ < a < 1), and in Ty(z) we have
el8®* <« m < z. By using Lemma 3, Lemma 2 and

B(m,Q) 2 P(m) > log P(m)

if P(m) € Q, we obtain that

1
Ty(z) < = > mpB(m, Q) log P(m)

m>elos® = P(m)eQ

1 T
5.4 :
== <r 2. miog Pm) < Gogay

Now applying Lemma 5 we have

Tl(z) = stelo‘a =, P(m)eQ m Ers::/m, (r,Q)=1, p(r)>P(m) 1

(5.5) = & (1+0 (raa‘«?s‘;)) Somgdents, Pm)eq )

= {C(Q) T2, Pim)e@ 2 Pm'.n) +0 (Imlo?)} {iog=)?

by repeating the argument used in the estimation of Tj(z). Thus we obtain
from (5.1), (5.3), (5.4) and (5.5) that (2.7) holds with

- £q(P(m))
m(Q) = C(Q) ———s.
m=2,;(m)60 mpB(m, Q)

Likewise we obtain (2.8) with

n@Q=c@ Y SN

m=2, P(m)€EQ



Arithmetic Functions Defined on Sets of Primes of Positive Density 295

and 0 < 72(Q) < m(Q) holds in view of (1.10).

6. Proof of Theorem 4 and Theorem §

If we can establish, for z > 2,

ez z
©) P G " iegs PR =0 (=)

then by partial summation (6.1) readily implies (2.10) with
bt dt
B = / R(t)t—2 — €”loglog 2.
2

To prove (6.1) note that

2 logP(n) = T igteP

2<n<z p<z
= (2"’ Z + Z lo '/’( ,P) 51+ S2+ Ss,
pSL  L<p<Vz fz<p<z Ep
say, where

. log z
Ehae ((loglog z)’) '

From (3.1) of Lemma 1 we have

e 2l°|o:p < ze g(lotlolz)zz 1 & 32 R
> plogp ~ log’z

62) Si<z E

since Zp 1/(plogp) converges. In the range L < p < /7 in S we may use the
asymptotic formula (3.2) to evaluate 1/)(%, p). We obtain :

Se=z Z ! (llogz—l)-i-
L<p<\/-P°gp ogp

6.3) +0 (z Z log ({%ﬁ;+ l)p (logz _ 1)) .

Lepeys Plog"P log p
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By using (3.3) and (3.4) it is seen that the contribution of the O-term in (6.3)
is
l logz 1 y &
<z Y —og (55 +1) - (125 -1) tos(j252-1)
L<p<vc P log” p
tl L 1 og = log =
. Me—(hﬁ—l)m(h‘.—.-l)h(g

L+o  tlog’t

1 logz 1 e 5 og =
. /ﬁi(;ﬂlf_ze-(h‘ﬁ-l)'°s(%;h-‘)dt+o( )
s tlog3t logzz
B z (loglog z)? 1 1)e=(v=1)log(u=1) 4 (o) 2
T log?z J; ulog(u + 1)e e 108 z <1°52“"’

after the substitution T'L = u. Similarly, substituting 1%!‘— — 1 = v, the main

term in (6.3) equals
vE log vE (logz dt
—_— - t 1) —%=
z/L+o tlogtp(logt 1) () z/L £ logt ) tlog?t
1 log z
- A
* Jero () (tlogt (lost 1))+

x
Bl (1032:)
(loglogz)?-1

z z
= l_ogz A p(v)dv+o(log’z)

_ (== ( z )
~ logz +9 log? z

Here we used (3.4),p(u)=1for0<u<1,p'(u)= —&;—ll < e and

(6.4) ' /ooo p(v)dv=e¢".

For a proof of the well-known relation (6.4),seeeg. G. Tenenbaum
(13]. Incidentally (6.4) follows in an elementary way if we compare our proof of
Theorem 3 with the elementary derivation of Theorem 1.2 0f J. M. De Kon i
nck-R.Sitaramachandrarao [6]. Hence we obtain

_(e7-1)z
(6.5) S1+ 85 = ks +0 (log z)
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Lastly we have, since 9(z,y) = [z] for y > z,

1
5= ¥ w?i0= T mml]- X ¥ o
VZ<p<z log p VZ<p<z Ing m<\/—\/_<p<z/m Ing
From the prime number theorem we obtain

Yy
E logp ’y +0 (1053:/) ’

r<y

which yields

S3 = Z:m<f(mzj+0( s (Z) £)+0(-:{f—))
(6.6) = Em<\/';"—1;‘§-(zj+o(i!—)-zflfﬁ’%—)'+o(sf’—)
= & [5a ol +0 (i) = 2 +0 (5z) -

The asymptotic formula (6.1) follows then from (6.5) and (6.6).
To prove Theorem 4 we shall prove

1 1 z
en X ePmQ) " - (@+0 (7)) e
where
- o~ fo(P(m))
(68) p@=c@ Y SO

and C(Q), £o(y) are as in Lemma 5. By partial summation Theorem 4 follows
from (6.7) with F(Q) = D(Q)/(1 - 6). Let § < a < 1. Then we have

) SR SRR, _1___+o(_=z__.)
e iy IO T TP Q) O \Toga)e
p(,..Q)S.log" =

. T
= %0+0 ()
say. Here we used the bound

Z lO P(ﬂ Q) E lo P(n) loz ’
ngs, (m@)>1 08 2<n<z 08 gz
P(n,Q)=P(n)
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which is a trivial consequence of (6.1). If n is counted by Y., then n can be
uniquely written as

n = mr, P(m) € Q) (T,Q) =1, p(r) > P(m)9

since P(m) = P(n,Q) < P(n) = p(r). Thus

1
Yo = z w Z 1=3,+3%,,

m<z, P(m)€Q r<z/m, (r,Q)=1
P(m)<elog® = #(r)>P(m)

say, where in ¥; we have m < K := elos’ = (e < B < 1), and in £, we have
K < m < z. By (3.1) of Lemma 1 we obtain

1 1 1
P U O Rl P I D

Pmygao8® = pSelos® = sy
z z
> = ("‘j”’) Pt /K ¥(t,) ‘f—,‘)
<=+ 2 plctgp (e-;—:% +/§ 6_%?)
pelos® = 4
1 _logk _11aeB-a 1 z
< zpsg;a,;e 5P zeiis x,.sﬁ?:a,i < (log =) loglog 2’

since > a and 2p<z% < loglogz. In ¥; we evaluate the inner sum by
applying Lemma 5 to obtain

(c@ro(igigz) mmr T wiesrin

log log = B 7. P(mreQ mlog P(m)
P(m)gelog™ =

S1

(D(Q) +o (log llog Z)) (lo: z)®’

where D(Q) is given by (6.8). This proves (6.7), but to justify the last equality
above we proceed as follows. From Lemma 6 and Lemma 2 we obtain

£q(P(m)) 1 1
(6.9) 2 < E 53 < —
A mlog P(m) = £~ mlog?~® P(m) = log'~* X
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Hence setting
Y =exp ((loglog z)l_iT)

and using (6.9) we have

) Lq(P(m))
mlog P(m)
mgelos? =, p(m)eQ
P(m)gelog™ =

_ Lo(P(m)) 1

- E mlog P(m) +0 log'—°Y
m<Y, P(m)EQ g Og
P(m)<elos® =

_ £q(P(m)) 1
- Z mlog P(m) +0 (loglogz)

m<Y, P(m)eQ

o to(P(m)) 1
= Z mlog P(m) +0 loglogz )’

since P(m) > €'°°% is impossible if m < Y. This completes the proof of
Theorem 4.
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