Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Mathematica
Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences — National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic
reprints.
Other uses, including reproduction and distribution, or selling or licensing copies, or
posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg




Mathemalica
Balkanica

New Series Vol.10, 1996, Fasc.4

A Comparison of Dynamic and Static Routing in Computer
Networks

Milan Tuba

Presented by P. Kenderov

This paper gives some theoretical insight for unexpected delays in the Internet, af-
ter highly dynamic routing was introduced. By complete mathematical analysis of a simple
network, we show that optimal dynamic routing, for most cases, does not offer a significant
improvement over optimal static routing. That minor theoretical gain can easily be lost, and
situation can actually become worse, if there is even a small error in the dynamic routing
tables.

1.Introduction

Highly dynamic optimal routing has been used in the INTERNET (2],
(3], [4], [5], [6]. Expectations that it will give much better results were not
completely fulfilled, because unexpected delays occurred often. This paper is an
attempt to give some theoretical explanation for such behavior.

We will do a complete mathematical analysis of a simple network, as
proposed in [1]. It will show that dynamic routing offers an improvement over
static routing, that is smaller than expected.

2.Model

Let us examine a simple three node network and even simpler offered
load. Nodes are A, B and C, and all traffic is from A to B. There are two
possible different routes: a direct path from A to B, and an indirect path of
the length two that goes through C. Let us assume that all three lines are
of the same capacity pu bits per second. Our routing problem is then reduced
to making a decision about what fraction a of the total offered traffic will be
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sent along the indirect path of the length two. The remaining fraction 1 — «
of the total load will be send along the direct path. Let us call @ a branching
coefficient. Let offered load be A bits per second and p will, as usually, denote
utilization A/u. We will also assume a Poison input stream of messages, and an
exponential service time on lines.

3.Limitations for Parameters

There are some limitations for the parameters that we introduced. Pa-
rameter « is a fraction (probability) so we certainly have 0 < o < 1. For this
particular case, we have an even stronger condition. We may have to send some
traffic along the longer route, which is more expensive, has longer wait time
etc., only if the direct path is overloaded (whatever the definition of the over-
load” is). It is obvious, however, that it never pays off to send more traffic
along the indirect route than along the direct route. If the lines were of differ-
ent capacities, costs, reliabilities etc., this would not have to be the case, but
according to our assumptions, we get the limitation that reasonable interval for
ais 0 < a < 0.5 (this will formally follow from the requirement that utilization
for each line must be less than 1).

There may be some additional limitations for a. If the total offered load
A is less than the line capacity u, then there are no problems. The network,
however, may withstand the total offered load of A < 2u or p < 2. The reason for
this is that we have two alternative paths, each of the capacity u. It is obvious
that when the total load approaches 2y, there is no more freedom in selecting
a. It has to be equal to 0.5, or one path will become overloaded, introducing
infinite delays.

The new set of limitations for a can be calculated as follows. With the
total load A, line capacity u, utilization p, and the branching coefficient o, the
utilizations of the direct path p;, and the utilization of the indirect path p; will
be:

(0.1) pr = (l-a)p and p3 = ap

In order to keep the network in a stable state (to avoid infinite queues and
delays), we have to avoid overloading any of the two paths. By solving p; < 1
and p; < 1, we get an additional constraints a < 1/p and a > 1 —1/p. If we
check the first constraint, we see that it is completely included in the previous
constraint a < 0.5.

Then, the fipal set of constraints is:
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(0.2)

(0.3)

(0.4)

max(O, 1—%) < a <05

The left constraint in the last expression is different from zero forp > 1.

4.0ptimal Waiting Time

The waiting time (including service time) for an M/M/1 queuing system

is:

(0.5)

Waymn(p) =

_1
u(1-p)

Wag/m/1 is a function of A and p, but they are connected through p, and
4 can be considered constant.
By using Kleinrock’s Independence Assumption, the total waiting time

for our network is:

(0.6) W(a,p) = (1-a)Wprymp(p1) + 2aWnymyi(p2)

By substituting (0.1) and (0.5), we get

(0.7)

or

(0.8)

W(a,p) = ul

W(a,p) =

l-a a 2«
1-(1=a)p] = ul-ap

3pa?+ (1 -3p)a+1
pll = apll - (1 - a)p]

Our goal is to optimize the waiting time so we need a derivative. Param-
eter under our control is a. Differentiation gives:
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(0.9) dW(a,p) _ p*’a® — 2p(2p—-3)a + 2p(p—2) +1
_ da 1(1 = ap)?[1 - (1 - a)p)?

We are looking for the minimum for W. After somewhat tedious analysis,
given in [7] (which includes proving that the second candidate for solution can
not satisfy conditions, and examining the second derivative), we get

(0.10) AT o s/§)pp— 3+2v2

In the process, from the condition a,pt > 0, we get an interesting limita-
tion

(0.11) p>1- %—5 or p > 0.2929

Expression (0.10) gives minimum for the function W (a, p), but only when
p > 0.2929. It is easy to see that for p < 0.2929, a = 0 gives minimal value for
W. This interesting result shows that for small utilizations, it does not make
sense to start bifurcated routing. Only when utilization exceeds approximately
30% of the line capacity, use of the alternate route of the length two should be
started.

Optimal (minimal) waiting time, when branching coefficient « is selected
according to (0.10) is:

(21 — 18v/2)p + 32v/2 — 45
up((6v2 — T)p — 122 + 14]

(0.12) wopt b

Here, and in the following discussion, case p < 0.2929 is not considered.
It would be easy to formally include that trivial case, but it would make no
changes in our analysis. For such low utilization there is no bifurcated routing,
whether we use dynamic or static routing.

5.Uniformly Changing Offered Load

Previous section assumes that we know the offered load A exactly, and
that it does not change in time. This case is not really interesting (but we would
be very happy to have it in practice). In reality, offered load is always changing
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in time, and that is what makes difference between static and dynamic routing,
but also gives possibility for an error when calculating dynamic routing tables.

Let us consider more general and more realistic case when the offered
load changes in time between the lower limit / and the upper limit h, where
0.3 <! < h < 2 must be satisfied. To make calculations easier (or possible)
we will assume that the load changes uniformly. That means that the value for
the offered load spends equal amount of time inside any subinterval of the same
size, included between ! and h. Such distribution corresponds, for example, to
constant-speed load shift from [ to h, back and forth. This assumption that
load changes uniformly between [ and h is somewhat artificial, but not very far
from what really happens in the network.

6.0ptimal Dynamic Routing for Uniformly Changing Offered
Load

We will now calculate the waiting time for optimal dynamic routing. We
select our optimal branching probability a infinitely fast, and at any moment it
follows precisely the changing load A. The total waiting time will be expected
value with regard to the distribution g(p) of the changing load:

h
(0.13) Wopt_dym = /l Wopt(p) 9(p) dp

By substituting (0.12) and g(p) for uniform distribution, we get

h (9v2 - 12)p — 17\/§+24d
1(3v2 - 4)p(2 - p)

1
(0.14) Wopdin = 7 /'

By solving this integral, we get the best we can hope for in the case of
uniformly changing load. Optimal dynamic routing gives waiting time:

(24 — 17v/2) In (-’,‘-) +42 In (22—_';';)

(0.15) Wopt.ign, = 2 (3V2-4)(h-1)

7.0ptimal Static Routing for Uniformly Changing Offered Load

Let us now examine static routing where the branching probability a
will always have the same, fixed value. To find the optimal value for that
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fixed branching probability a, we do again differentiation and integration, but
in the reverse order. Previously, we differentiated W to find optimal a for a
particular p and then, using that optimal a, integrated over all possible values
for p (with regard to distribution for p). Now, we will integrate over all possible
values for p (assuming that a is fixed) to find average W and then differentiate
that expression with respect to a to find the optimal fixed value for a, which
minimizes W.
Average waiting time for a fixed a will be:

h
(0.16) Wary =. /I W(p) g(p) dp

or, after we substitute (0.7) and g(p) for uniform distribution

(0.17) Wavg = _,/ [ [ _I(Ifa )p) + ,4(12_aap)]dp

By solving this, we get

1 (1= ad)?1 = (1 - )]
p(h=1) " (1= ah)2[1 - (1- a)h]

(0.18) Wavg =

Now, we differentiate this expression with regard to a:

dW,g 3al — 21 + a®hl — 4ahl + 2hl + 1 + 3ah — 2h

da ~— p(l—h+ah)(-1+ah)(1-1+al)(-1+al)

(0.19)

Again, after even more tedious analysis, given in [7], the solution is:

(020) Qopt_stat = [R + 4lh — 31 3h]

2hl

where

(0.21) R = 1/(8h% — 16h + 9)I2 + 2(7 — 8h)hl + 9h?

By substithting this @gpt stat into the function for the average waiting
time (0.18), we get an expression for the optimal waiting time for static routing:
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In (13[R+hé4l—5)—31]‘7;R+h(2l-1)-3?)
(022) Wopt_atat — h3[R+h(4{-3)-5 +h(20-3)-1
. u(h —=1)

This case represents pure static routing if the boundaries ! and h are
fixed and never change. In practice, we use a quasi-static routing where the
boundaries [ and h do change over time, but much slower than the offered load
p- We adjust [ and h, and corresponding aopt_stat, but we do it once every hour
or so. For shorter periods of time routing is static, while dynamic routing chases
changing offered load continuously.

8.Comparison

Now, we will compare optimal dynamic routing and optimal static rout-
ing. Formula that is used to calculate improvement is

(0.23) Improvement = (W—""‘;"—m—' - 1) * 100%
Wapt.dyn

The following Table 0.1 shows improvement in percents (reduction of
delays) when optimal static routing is replaced by optimal dynamic routing, for
different intervals [l, h], where offered load p is uniformly changing.

Lh{05 07 09 1.1 13 15 1.7 1.9
03/06 13 18 22 25 27 28 29
0.5 02 06 1.0 13 1.7 20 23
0.7 0.1 04 07 11 15 20
0.9 0.1 03 0.6 1.0 1.6
1.1 0.1 03 07 13
1.3 0.1 04 1.1
1.5 0.1 0.7
1.7 0.4

Table 0.1: Dynamic vs. Static routing, improvement in percents

Rows in the table give corresponding improvement for particular /, columns
for h. Since I < h, only the upper right triangle of the table is used, diagonal ex-
cluded. First impression is surprisingly small improvement that dynamic routing
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introduces. It allows us to make claim that too zealous optimization is harmful.
Even without any errors in calculating routing tables, best improvement we can
hope for, the upper limit, is given in Table 0.1. Average improvement is about
1%, maximal improvement is less than 3%. It is not surprising that maximal
improvement is achieved when interval [/, h] is wide. Traffic then varies a lot,
and if we can follow that wide variations, improvement will be more significant.

When we look at this modest improvement, we should keep in mind that
we are dealing with a very simple model with only three nodes and one source.
In a larger network, it is possible that improvement would be better, but chances
for an error in the dynamic routing tables would also be better. The combined
effect would probably be the same.

The conclusion is that optimal dynamic routing gives modest improve-
ment over optimal static routing. That small improvement can easily be anni-
hilated, and actually dynamic routing can give larger delays than static, if there
are any errors in the dynamic routing tables. Such errors always exist, because
it takes significant time to calculate new routing tables, both to accumulate data
in any node, and to exchange data among nodes. By the time the calculation is
finished, load may be sufficiently different to make the tables obsolete, and the
routing far from optimal.
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