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A Direct Method for Solving Band Systems of Linear Algebraic
Equations

M. Salah El-Sayed

Presented by P. Kenderov

A generalization of a known direct method for solving tri-diagonal systems of linear
equations is proposed and studied. The (2m + 1)-diagonal system of linear equations are
considered. Comparison in some kinds of linear systems of equations for our method (P-
method) and Sweep method (S-method) are discussed.

1. Introduction

As it is well known [see 1 and 3-5] that the S-method for solving tri-
diagonal and (2m + 1)-diagonal systems is effective (stable) if the matrix of the
system is diagonally dominant. The p-method solving band systems is effective
method if the matrix of the system is non dominant diagonal. In a sense, the
applicability of the P-method and S-method complement each other.

In this paper we construct the algorithm for (2m + 1)— diagonal (band)
matrix of the systems and prove main theorem for choise the initial values for
the algorithm. Section 2 describe the method for doing this. Section 3 contains
the comparison in some kinds of linear systems of equations for P-method and
S-method.

2. Description of the method (Algorithm)
We are describe here the generalization of the method which is given in

(4, p.42).
Let we have

(0.1) Az

I
~
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be a mzn linear system of equations with a matrix A = (a;j), a;; = 0 for
|i—j| > m < n,z = {z;}, f = {fi:} and detA# 0. Therefore, (1) is band system
with width (2m + 1) of the band of the matrix A.

The method consists of the following:

In the first equation of (1) we set z, = z*¥ (s=1,2,...,m) and

(0.2) vk = (= 2k, .28y K=0,1,...,m.

After this from the same first equation of (1) we can obtain z,,4, = z% ., ,from
second equation of (1) Z,42 = 2 ., and etc., we stop with the determining of
z, = zk from (n — m)** equation. Thus we obtained m + 1 solutions

zk = (z%,25,...,2k) of the system formed by the first n — m equations of (1).
Further, we search the solution of (1) in the form

(0.3) g=24+0oy(z' =29+ ...+ an(z™ - z™!),

where a,,S = 1,2,..., m are parameters to be found. For this reason we will
call this method as parametric method or p-method. It is easily to seen that the
independently of the values of the parameters, z from (3) satisfies the first n—m
equations of (1). Therefore, parameters a, and z from (3) must be satisfies the
last m equations too. This leads to the following system for o = (ajay .. cam)T

m
(0.4) Zag(x‘—z"“)'a,zf,-—a,-zo, i=n—-—m+1l,n—m+2,...,n,

s=1

where a; is it"* vector row of the matrix A.

Now, arising the question when the system (4) has an unique solution,
i.e. when the matrix of the system (4) is non- singular. The answer is given by
the following

Theorem. The linear system (4) has unique solution if the system
from vectors :

m~—1

(0.5) V=909 -9. " -y

is linear independent.
Proof. Let (5) linear independent system from vectors. We can write
system (4) in the form

m
20,(1',’—1':"1):—7'? (i>n—-m),
s=1
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where rf = a;2° — f; , and we assume that the determinant of matrix of-the
system is equal zero. In this case there exist a non-zero vector (t;,12,...,tm),
such that

Sotu(ri-ri)=0 (i>n-m)
s=1

But the above equation is true for each i < n—m too. Therefore, it will be true
and

m
(0.6) Yt (r* =Yy =0,
s=1 ’
where r* = (r{,r3,...,72)T . Further, from (6) we find consecutively

f: Alts(z® - z*" )] =0
s=1

AY ty(z* -2 ) =0

s=1

f:t,(z’_— 2~ =0

s=1

Zts(y’ o ys—l) = 0.
s=1
But the last equation shows the system of vectors (5) is linearly dependent.

Then there exist contradiction which proof the theorem. w

Remark 1. It is easy to see that the system in the above theorem can
be replaced by

(0.7) R A TR TR Tl T
From this, combined with the theorem leads to the conclusion that we can take
¥ = 0,y° = e*(s = 1,2,...,m), where e* is denoted the st* m-dimensional

orthonormal vectors.

Remark?2 Inthecase m = 1 P-method is comparable with the
S-method with respect to the total number of the arithmetic operations. For
the both methods this number is O(n).
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Rem ark 3. Itis evident that for the applicability of the P-method
described with det A # 0 it is necessary all a; 41 #0 (1 =1,2,...,n — m).
But, as we will see later, next inequality and moreover the condition

(0.8) laimer] > D laisl
i<m+1

is not sufficient for the effectivenesses of the method .

3. Numerical experiments

In each of the following examples we will solve a system of linear equations
Az = f, where A = (a;j),z = (z;) and the vector f = (f;) is chosen in such a
way that the solution of the system to be z = (1,1,...,1)T. The error € of the

solution computed Z = (£, Z2, . . .,:i:,,)T is measured by the first vector norm
(0.9) €(z) = ||z - ||, = m?x|z.- — &4|
3.1. a; =1 1=1,2,...,n
iiv1 =Qipri=n 1=12,...,n—-1
a;; =0 Otherwise.

Experiments with n = 50 and n = 100k (k
maximal error €, for this example

maxy €n(£) = w.107°
where here w is a corresponding number in the interval [0.1,1).

1,2,...,10) were made. The

3.2. a =1
a; =2
Qnn =146
Gii+i =8ip1s=1 1=12,...,,n-1
a;; =0 Otherwise.

It easy to show that det A = 4.

In the following table 1 ”-” means that the method is ineffective.



A Direct Method for Solving Band Systems ... 401

n é P S

50 | 1077 [ w.10*! | w.107°
50 | 1074 | w.10*! | w.10~2
50 | 1077 | w.10*! | w.10*!
100 [ 10T [ w.10*! | w.107°
1001074 | —-- |w.1073
Table 1| 100 { 107 | —— |w.10*!
200 [ 1077 | w.10¥T | w.107°
200 | 1074 | w.10*! | w.1072
200 | 1077 | w.10*! | w.10*!
400 [ 10°T [ w.10*T [ w.107°
400 | 107% | w.10*! | w.10°3
400 | 1077 | w.10*! | w.10*!

The P and S columns of the Tables 1,2 are the errors of the computed
solution arising with P-method and S-method. It is seen that the results by the
S-method are much better than P-method, due to the fact that A is a matrix
with diagonally dominant which is unfavorable for the P-method.

In the following examples the matrix A of the system is a tri-diagonal
Toeplitz matrix, i.e. the matrix of the form

@i41i=const =a 1=1,2,...,n-1
a;; =const =b 1=1,2,...,n
a;iy1 =const =c 1=1,2,...,n
a;; =0 Otherwise.

Further, we can use the denotation A(a,b,c) for such a matrix.
In the case for such a matrix, if z satisfies the first n — 1 equation of the
system, then

(0.10) azs_y + bz, + cx o4y = fs 8=2,3,...;8+1

and z, can be obtained using the formula of the general solution of a recurrent
equation with constant coefficients (10). As it is well known, this formula has
the form

(0.11) Ty = pAl + qA3 + &, 8=21:;2,8,:v0

or
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(0.12) Ty = pA® + qsA® + 4, s=1,2,3,...

where p and ¢ are constants, and d, is particular solution of (10) and formula
(11) is valid if the characteristic equation cA%+bA +a = 0 has two distinct roots
Ajand Az and formula (12) is valid if A; = Ay = A. Now in the same way for
P-method, if z; = 29 is given which satisfy the first equation bz, + cz2 = fi,
and (11) or (12) also, then we can obtain the coefficients p = pg,q = go and z =
2%(z = (z1,%2,...,2,)T) are uniquely determined by the first n — 1 equations
of Az=f. If we obtain a second particular solution z!(p;,q) of the first n — 1
equations in the similar way, then the unique solution of the system is sought
of the form

(0.13) z=az’+ (1 - a)z'.

where a is a numerical parameter. Since z° and z! satisfy the first n—1 equations
of the system, then whatever a and z of (13) to be, it will satisfies the same
equations. Hence, z from (13) will be a solution of the whole system if it satisfy
last nth equation of the system. Thus we can obtain the value

0
(0.14) o= —B

rd—rl

with rs =azs_, + bz} + fn, s§=0,1.

These considerations can help to interpret some of the results in the
following examples and to characterize the domain of applicability of the P-
method for solution of Toeplitz tri-diagonal systems.

33. a;=4 y=1,2,...,n
Gii41 =Gip1;+2=10 i=12,...,n-1

a;; =0 Otherwise.
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n ) P S
50 | 1 0 w.1074
50 | 4 0 w.1073
50 | 7 | w.107% | w.107*
50 | 10 | w.107% | w.107°
100 | 1 0 w.1072
100 | 4 0 w.107!
100 | 7 | w.107® | w.10"2
Table 2| 100 | 10 0 w.1071!
200 | 1 0 w.10t1
200 | 4 | w.107% | w.10%3
200 | 7 | w1077 | w.10t4
200 | 10 | w.1077 | w.10*3
400 | 1 0 w.10%®
400 | 4 0 w.10*4
400 | 7 | w.107% | w.10*3
400 | 10 | w.107% | w.1013

It is seen that Table 2 that P-method gives results with much greater accuracy
than S-method. Such is the situation for greater n too.

3.4. A= A(1/8,1,4)

For the above matrix A we can show that

-n -1
(0.15) det A = 273" cos (ﬁT)—”
where n is the order of the matrix. From (15) we obtain that detA = 0 if and
onlyifn =4k+3; k=0,1,2,.... It is clear that detA — 0 for n > oo . The
solutions of the corresponding characteristic equation are
A = A

i.e. |A1] = |A2l =v2/8 < 1. In this case, according to the considerations made
above, if z is the solution of the first n — 1 equations of Az = f, then we will
have

(0.16) ar=pA Ak +1 k=1,2,...

From the above equation (16) it is clear that zx — 1 For k — oo. This implies
that for arbitrary chosen € > 0 and z,, there is a great enough n such that z
can be taken as an approximate solution not only of the first n — 1 equations
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of the system, but also for the whole system Az = f too. In this case of n the
P-method is unapplicable. The computational practice confirm this.

3.5. Other experiments of tri-diagonal Toeplitz system with the matrix
of the form A(a,b,c; A1, A\2) were made. They concern the cases:
351. A=A(1,1,-2;-1,2)
3.52. A= A(4,1,-4;-0.88,1.13)
3.5.3. A= A(1,4,4;-0.5,-0.5)
354 A= A(4,-4,1;2,2)

3.6. a;=10"* i=1,2,...,n; k=1,2,...5
Giip1 =989 i=1,2,...,n-1
i1, =9.10"% i=1,2,...,n-1
a;i42 =10 1i=12,...,n—2
a,'.,.g,,'=10'3 1i=1,2,...,n—2
a; =0 Otherwise.

In this example of five-diagonal systems the S-method happens to be
ineffective. The solution by the P-method of the above examples were obtained
by the maximal error of the form

maxs,, €(£) = w.10~2.

Along the fact that P-method solves linear systems for which the S-
method is unapplicable, it has following advantages more:

P-method give a good and natural options for parallel treating and for
computing of separate components of the solution of the Toeplitz systems only
without looking for the whole solution.
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