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We consider the additive overlapping domain decomposition method for 3-D linear
elasticity problems. Due to the possibilities to model complicated structures the finite element
method (FEM) is an extremely successful method for the problems of linear elasticity. The
implementation requires the solution of very large, sparse, positive definite linear systems of
equations.

In this paper we report on some algorithms and numerical experiments concerning the
implementation of the additive overlapping domain decomposition method to problems arising
from the 3-D Elasticity Theory.

1. Introduction

The domain decomposition (DD) methods are very convenient in order to
handle complex geometries, nonsmooth solutions, differential equations which
have different coefficients in different subregions of the domain.

In 1936, Sobolev [9] showed that the Schwarz alternating algorithm con-
verges for the linear elasticity equations. Recent work in this area were done by
Bjorstad and Hvidsten (2] (Neumann - Dirichlet algorithm), De Roeck (8] (iter-
ative substructuring type algorithm), Huges and Ferencz [6], and Tezduyar and
Lion [10] (element - by - element preconditioning on large structural problems),
etc.

!The author was supported in part by the European Community trough COPERNICUS
Project CP94082 and the Bulgarian Ministry of Education and Science under Grant MM-
417/94
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In this paper we report on some algorithms and numerical experiments
concerning the implementation of the additive overlapping domain decomposi-
tion (DD) method to problems arising from the 3-D Elasticity Theory.

The paper is organized as follows. Section 2. is devoted to a description
of the problem under consideration. In Section 3. we focus on the discretization
and the solution method where three-linear finite elements and preconditioned
conjugate gradient method with an additive overlapping domain decomposi-
tion preconditioner are included. A brief description of the benchmark problem
according to the research plan of the HIPERGEOS Project COP-94 00820 is
given in Section 4. Section 5. is the main section in this paper. It is devoted to
some numerical experiments which have been done using the benchmark prob-
lem and a different choice of the discrete problem parameters: meshsize of the
discretization, number of the subdomains used in the domain decomposition al-
gorithm, size of the overlap and stoping criteria. The results obtained show a
good behaviour of the numerical procedure in consideration - domain decomposi-
tion preconditioner in preconditioned conjugate gradient method and block-size
reduction BILU algorithm for solving the local (in each subdomain) problems.
Small numbers of overlapping subdomains are used at this stage of the inves-
tigations and therefore a coarse grid correction has not been constructed. The
results are compared with the previous results obtained for the same benchmark
problem.

2. The elasticity problem

Let B be an elastic body occupying bounded polyhedral domain 2 ¢ R3,
impose a Dirichlet and Neumann boundary conditions on I' = 8Q (fig.1). The
domain consists of two different parts: soil - 2; and concrete element — 23. We
denote by u= [uy,u2,u3])” the vector of the displacements, by ¢ = (0;;)(u) the
stress tensor and by ¢(u) = (¢;;(u)) the strain tensor (the deformation associated
with u).

We consider elasticity problems under the following general assumptions:

e the displacements are small;
e the material properties are isotropic.

The material constants depend on the modulus of elasticity (Young’s
modulus) - E and on the contraction ratio (Poisson ratio) - v of the elastic
materials of the body B.
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Figure 1. The domain under consideration

Let us note with D the elasticity matrix

A+2p A A 0O
A A+ 2 A vy 0 0
D= A A A+2u 0 0 O
10 0 0 p 0 0}’
0 0 0 0 p O
0 0 0 0 0 u
where the positive A and y (material constants) can be expressed as:
\= Ev _ FE
T (+v)(1-2v) F=1+v

Thus,
g=De¢ or ¢=D7lg.
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If we introduce the matrix A as:

x 0 0
05—!’2
A=| p o % |,
3y Bz
2% 7
0 &

then € = Au. :
The following constitute relation (Hooke’s law)

Loy = /\divu&j + pei(u), i,7=1,2,3.
and the equilibrium equations:
3

- (LIRS
Jj=1

(L u); 3z,

hold, where f = [f1, fa, f3]T is the vector of body forces.

3. The numerical problem and the solution method

The numerical problem

The stressed-strained state of the elastic body under consideration (see
Section 1) can be described by a coupled elliptic system of three partial differ-
ential equations and the corresponding boundary conditions as follows [7]:

ATg + f = 0 V(z,y,2) € N
u = up VY (z,y,2) €Tp
YTiioyni = uy;, V(z,0.2)€TN, =123,

where I'p and I'y are the parts of the boundary I" with Dirichlet and Neumann
boundary conditions and up and uy are the given boundary data.

The variational formulation of the above determined elasticity problem
is:

Find: u € (H'(Q))?3, such that

3
an(u,v) = /n(A divudivv + p Z eij(u) €j(v)) dz = F(v), Vve (HY(N))?,
i,j=1
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where

‘ 3
F(v) = mzl(/‘; fividz + -/PN uN..v,-dl").

The bilinear form aq(u,v) is a second order, symmetric and coercive
bilinear form.

The solution method

The finite element method with three-linear parallelepipedal finite ele-
ments is used for the numerical solution of the problem (see [1], for example).

Let V*(Q) C (H'(R2))? be the spaces of continuous piecewise linear func-
tions, on the triangulation. Then, the discrete variational problem is:

Find: u, € V*(Q), such that
aq(un,vi) = F(vs), Vv, eV"Q).

We will use the standard nodal basis functions ®; for the space V. The
algorithm leads to the linear system of equations according to the unknown
nodal displacements

(0.1) U = F,

where U = [U;]T is the vector of unknowns - i = 1,2,...,n, n is the number of
all nodes in § 7 - the right-hand side is the vector of components F; = F(®;),
and K is the s..ffi s matrix with entries Kj; = aq(®;, ®;).

To solve t' linear system of equations (1) the following preconditioned
conjugate gradient procedure is used.

PCGM - procedure:

» Up - an initial arbitrary choice;
[ rg = F-K Uo;
for k=0,1,... wuntil convergence

. Mz, = ry;

M ﬂk—_(r_"’_zil_ Bo = 0;

(re—1,Z8-1"

- Px = Zk + BkPr-13
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The preconditioner M is constructed via the additive overlapping domain
decomposition method as follows.

The domain Q is divided into non-overlapping substructures £2;,1 =
1,2,...,N (Fig.2) with diameters of the order of H while the finite elements
have characteristic diameters of order h.

We extend each subdomain € to a larger region €; (Fig.3). We assume
that the overlap is generous, assuming that the distance between the boundaries
99; and 8%; is bounded from below from a fixed fraction of H;, the diameter of
Q;. -
We also assume that 8§); does not cut through any finite element. We
make the same construction for the substructures that are next to the boundary
of the domain 2 except that we cut off the part of Q; that is outside of .

Let K; be a local stiffness matrix according to the subdomain Q. We
define restriction maps R; and extension maps R7, as follows. Let the global
stiffness matrix K is of order n and denote with 7i; the number of the nodes
with respect to €2;. For each subdomain 2; the matrix R; is (n x n;) restriction
matrix with entries 1’s and 0’s, taking into account the indexes of the nodes
belonging to ;. This matrix restricts a vector x of length n to a vector R;x of
length 7;. Thus, the local stiffness matrix Ki corresponding to the subdomain
ﬁ,' is

K: = R KRT.

In the case of many subdomains, the additive Schwarz algorithm is a
generalization of the well known two-subdomain case with a preconditioner

N
wid = 2Rl K[! Ri.
=1

As the matrix—vector products R;r K i" R; y can be computed in parallel
for the different subdomains, this leads to a coarse grain parallelism. Taking
into account the definition of the restriction matrix R; (and the extension or
interpolation matrix RT) we may conclude that it is not necessary to store these
matrices.

So defined preconditioner M, 44 is a straightforward generalization of the
standard block-Jacobi preconditioner. The convergence rate of this precondi-
tioner deteriorates when the number of subdomains increases.

The algorithm for solving the system Mz, = r, with M =
M_,qq is as follows.
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‘T, — vector of a length #i;; entries are equal to those of ry

° for the components corresponding to the meshpoints in
©; and 0 elsewhere;

o Z} ?,iz = T},

z, — vector of a length n; an extension of )

L ] . -~
with 0 entries outside §);;

oz = TN, CH

The coefficient matrices of the systems of linear algebraic equations
K3 = i
are symmetric positive definite block matrices and the preconditioned conjugate
gradient method with block-size reduction block-ILU preconditioner proposed

by Chan and Vassilevski [4] (see also: [3] and [5]) is used to solve the systems
in each subdomain. '

4. The benchmark problem

The benchmark problem imposes some basic requirements to the HIPER-
GEOS code related to the bridge engineering applications. A filling pile clement
under the assumption that the technology guarantees the ideal contact between
the pile and the surrounding soil media is considered.

The computational domain is the parallelepiped

Q= {0, zmam] X [01 yma:t] X [0, zmaa-.]-

Boundary conditions of Dirichlet and Neumann type on the different
parts of the boundary of the domain are given as follows:

e Homogeneous Dirichlet boundary conditions on the bottom side of the
parallelepiped 2z =0 |, i.e the displacements are equal to zero;

e Homogencous Neumann boundary conditions on the vertical sides of the
parallelepiped .

=0, T=Zmaz, Y=0, Y= Ymaz

i.e the stresses are equal to zero;
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e Nonhomogenuous Neumann boundary conditions on the top side of the
parallelepiped 2z = Zmar , where the load from the upper construction
is applied. .

Benchmark: Single pile in a homogeneous sandy clay soil layer is con-
sidered. The computational domain 2 is determined by

zmaa: = ymar = lzm; zmnx = 27m.

The length of the pile and the size of the active zone under the top of the
pile are respectively L = 15m and Haq = 12m . The mechanical
characteristics of the pile and of the soil layer are:

(a) pilee E = 31500 MPa; v = 0.2;
(b) soil: E = 10MPa; v = 03.

An uniformly load distribution on the cross section of the pile is assumed.

5. Numerical experiments

This section is devoted to some numerical experiments which have been
done using the benchmark problem under consideration and a different choice
of the discrete problem parameters: meshsize of the discretization, number of
the subdomains used in the domain decomposition algorithm, size of the overlap
and the stopping criteria. All the tests were run on SUN SPARC station 20.

The results from the numerical experiments have been done are presented
in Tables 1-7. In all the tests h; = hy = 0.6m' , while the meshsize
parameter in  z-direction is different: - h, = 1lm inTables1-5,and h; =
0.5m  in Tables 6-7.

In Table 1. a comperisson of the user time between two subdomains
and four subdomains domain decomposition of £ (see Fig. 4 and Fig.5) is
shown. All the times in all the tests are in minutes.

overlap | 2 subdomains | 4 subdomains
h, 59.57 76.34
2h, 57.28 85.12

. Table 1. User time in minutes; hy = hy = 0.6m; h; = Im
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Figure 4. The two subdomain case. The overlap is 2h.

Table 2. and Table 3. are devoted to show some dependences of the most
important components of the numerical algorithm on the size of the overlapping
when the meshsize parameters are: h, = hy =0.6m; h, = 1m

The user time, the number of iterations in the PCG algorithm with the
corresponding domain decomposition preconditioner, average number of itera-
tions in the inner solver (the precenditioned conjugate gradient method with
block-size reduction block-ILU preconditioner) and the average reduction factors
for the two solvers can be found in these tables. The results for two-subdomain
case show an improving of the components, including the user time when the size
of the overlap increases. The number of DD iterations only slightly decreases
with the increasing of the overlap size as has to be expected.

There are two test runs for four-subdomains case: with h and 2h
overlap. The results obtained show that nevertheless the number of DD itera-
tions slightly decreases the user time increases in 12%.

The Table 6. shows the dependences of the most important components
of the numerical algorithm on the size of the overlapping when the meshsize
parameters are h; = h, = C.6m; h, = 0.5m . One can find the same
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dependences as at the previous discretization.
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Figure 5. The four subdomain case. Thc overlap is h.
User time || No. of Average Mo. arf | arf g
Over- in iter. in of iter. in in
lap min pcg-dd | in PCG (inner) || pcg-dd | PCG (inner)
2 2y 0 2y
h, 59.57 6 3.2 9.7 0.248 | 0.46 | 0.59
2h, 57.28 5 2.8 9.4 0.167 | 0.32 | 0.61
3h, 56.46 4 2.7 10 0.108 | 0.29 | 0.58
4h, 50.41 4 1.5 5.8 0.096 | 0.13 | 0.39

Table 2. Two subdomain case: hy = hy = 0.6m; h, = Im
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I| User || No. of [ Average No. of

Over- || time | iter. in iter. in
lap in | pcg-dd PCG (inner)
min Q| 2 Q3 | N

h, 76.3 13 381514775
2h, 85.1 10 47163169 | 10

Table 3 a. Four subdomain case: hy = hy = 0.6m; h, = Im
User time and number of iterations

arf arf
Over- in in
lap pcg-dd PCG (inner)
Q | Q| Q| U
h, 0.535 | 0.41 | 0.44 | 0.43 | 0.53
2h, 0.453 | 046 | 0.53 | 0.49 | 0.65

Table 3 b. Four subdomain case: hy = hy, = 0.6m; h, = 1m
Average reduction factor

The results presented up to now are obtained when the stopping criteria
tolerances in the outer (DD) iterative procedure and the inner (PCG in each
subdomain) iterative procedure are equal.

Tables 4., 5. and 7. show some results when the tolerance in the inner
iterative procedure is square root of the tolerance in DD iterative procedure.
Tables 4. and 5. are devoted the cases when h; = hy = 0.6m; h, = 1m
while the Table 7. presents the results when h; = hy = 0.6m; h, = 0.5m.

Overlap €in = Eout Ein = v/Eout
User | No. of | arf || User | No. of | arf
time iter. time iter.

1 59.57 6 0.248 || 73.27 | - 41 0.814
2 57.28 5 0.167 || 43.11 13 0.525
3 56.46 4 0.108 || 45.21 13 0.523
4 50.41 4 0.096 || 81.26 39 0.805

Table 4. Two subdomain case: hy = hy, = 0.6m; h, = Im
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One can see that in the case of two subdomains and overlap of h; or 2h,
nevertheles the number of DD iterations increases significantly, the user time
decreases in 25% and 20% correspondly. At the same time in the case of four

subdomains the user time increases in 3% when the overlap is h and decreases
in 9% when the overlap is 2h.

Overlap . Ein = Eout €in = yEout
User | No. of | arf || User | No. of | arf
time iter. time | iter.

1 76.34 13 0.535 || 78.47 34 0.798
2 85.12 10 0.453 || 77.59 28 0.750

Table 5. Four subdomain case: hy = hy = 0.6m; h; = 1m
Ein = Eout VETSUS Ein = /Eout

User No. of | Average No. arf arf
Over- || time in || iter. in of iter. in in
lap in pcg-dd | PCG (inner) || pcg-dd | PCG (inner)
min Ql 92 Ql QQ

1 204.42 11 5.36 14 0.489 | 0.49 | 0.68
2 169.34 9 5.11 12 0.411 | 047 | 0.65

Tuble 6. Two subdomain case: hy = hy = 0.6m; h, = 0.5m

It can be seen in Table 7. that in the case of two subdomains and
hy = hy =0.6m; h, = 0.5m the user time decreases in 23% when the overlap
is h and in 14% if the overlap is 2h.

Overlap Ein = Eout Ein = \/Eout |
User | No. of | arf User | No. of | arf
time iter. time iter.

1 204.42 11 0.489 || 157.34 26 0.749
2 169.34 9 0.411 || 145.29 23 | 0.716

Table 7. Two subdomain case: hy = hy = 0.6m; h; = 0.5m
Ein = Eont VErsus €in = \/ewt
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6. Summary

An implementation of the additive overlapping domain decomposi-
tion method to 3-D elasticity problems on sequential computers is present-
ed. The results obtained are for filling pile element under the assumption
of ideal contact between the pile and the surrounding soil.

The numerical results of the test examples are in an agreament with
the theoretically expected.
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