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It is said that a Riemann surface S is hyperbolic, if its universal covering
surface S is conformally isomorphic to the upper half plane II. The Riemann
surface S can be realized as the orbit space /I/T and the canonical mapping
p: H — H/T is a complex analytical projection. Here I' is a discrete group of
conformal automorphisms of H, such that every non-identity element of T' acts
without fixed points of H. The eclements of T' are called deck transformation
and they can be characterized as holomorphic maps A : [T — I satisfying the
identity po A = p.

The metric ds = |[dw|/v, w = u+iv € 11, is called the Poincaré metric on
the upper half-plane H. The Poincaré distance p(z1,22) = pu(=1, z2) between
two points of H is the minimum, over all paths 4 joining z; to z2, of the integral
J, ds. This is the unique Riemannian metric on the half-plane i, up to a multi-
plication by a constant, which is invariant under every conformal automorphism
of H.

Every hyperbolic surface S has a unique Poincaré metric which is com-
plete, with Gaussian curvature equal to -1. Since the Poincaré metric on II is
invariant under action of I', there is only one metric (scalar product) on § so
that projection p : H — S (S & H/T) is a local isometry. llere, just as the
above, there is an associated Poincaré distance function p = pg.

Theorem A. Let f: S — W be a holomorphic map between hyperbolic
surfaces. Then,

(1) pw(f(2), f(z1)) £ ps(z,21),  z,21€S.
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Furthermore, if an equality holds for some z # z, then f : S — W is onto.
Proof. Let p: H — S and py : I — W be canonical projections.

The mapping f can be lifted to analytic function F' of H into H which satisfies

fop=pioF. Now by the classical Schwarz-Pick result we have ;

(2) p(F(w), F(wy)) < p(w, wy), w,w, € I,

where p is Poincaré (hyperbolic) distance on 1. Combining the above facts, we
derive (1).

If an equality holds in (1) for some z # 21, then we can show that equality
holds in (2) for the corresponding w # w,. Hence, by the classical Shwarz-Pick
result on H, we conclude that F is a conformal automorphism on /. Thus
F : H — H is onto and therefore, f : S — W is onto. =]

Theorem 1. Let S be a hyperbolic Riemann surface, lel K be compacl
subset of S and let f: S — S be a holomorphic mapping.
If f is not onto and f(K) C K, then there is a unique fized point 3y =

f(20) € K.
Proof. Let p denote Poincaré distance p = pg on S and let I(z) =
p(z, f(z)), z € S. Using Theorem A and the triangle inequality, we can derive

[h(21) = h(z2)| £ 2p(21, 22),

if z; and 2; belong to S. Thus A is a continuous function on S. Hence, there is
at least one 29 € K such that

h(z0) = min h(z).
From this fact and Theorem A, we have
L (200, F7(20)) < pz0), S(z0)) € p(S(z0), S7H0)),
where %(z0) = f(f(20)). Thus,
p(z0, f(20)) = p(J(20), f**(20))-

Now, if zo # f(z0), another application of Theorem A shows that f is a
conformal isomorphism. Hence, since f is not onto, we conclude that z, = f(z).

If we suppose that there is z; € § such that z; # zp and 2y = f(2) is
another fixed point, then we have

p(f(21), f(20)) = p(21, 20).



lolomorphic Fixed Point Theorem on Riemann Surfaces L

Hence, we conclude as above, that f is a conformal isomorphism and we have a
contradiction. Thus 2o = f(2p) is a unique fixed point. [

The example f(z) = 52 on D{z : 0 < |z| < 1} shows that a mapping
which maps the compact ring K = {z:¢ < |z] <1} (0< ¢ <7< 1)into itself,
does not need to have any fixed point.

The example w — w+ i on the upper halfl-plane shows that a map which
is not onto, does not need to have any fixed point.

Now, let us consider the Riemann sphere €' = C' U {00} with the usnal
conformal structure. The continuous mapping f : C ~ C defined by f(z) =
—(1/r)e™ for z = re € C'\ {0}, £(0) = o0 and f(c0) = 0, has no fixed point.
However, the next result shows that if f is a holomorphic mapping from C into
C, then f has a fixed point.

Proposition 1. Let [:C + C be a holomorphic function. Then [ has
at least one fized point on C. :

Proof. If f did not have fixed point, then the function

h(:) = (f(z) =)

would be holomorphic function from €' into C. Since C is compact set, the
maximum modulus theorem shows that i(z) = A # 0,z € C . llence, f(z) =
z+ A1, 2 € C. Thus, f(00) = 00, which is contradiction with our assumption
that there not fixed points. "

The next example shows that a holomorphic map on a torus does not
need to not have any fixed points. Let 7' = C'/G be a torus, where the covering
group G of C over a torus consists of transformation z = z+nw; +nw and where
w; and wy are complex numbers, Im(w;/wy) # 0, and m and n run through all
integers Z. Let [z] denote the orbit of point z. Thus [2] = {A(z): A € (}. The
holomorphic function f : T — T defined by f([z]) = [z + w;/2] has no fixed
point.

In the case of several variables, we have the following result concerning
lixed points. The proof is given in a next paper.

Theorem B Let D C C" be a domain for which Carathéodory pseu-
dodistance is a distance and let f : D — D be a holomorphic mapping. If f(D)
i8 « compact subset of D, then f has a fived point in D.
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